Description: Closure of the inferior limit function. (Contributed by Glauco Siliprandi, 2-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | liminfgf.1 | |- G = ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
|
| Assertion | liminfgf | |- G : RR --> RR* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | liminfgf.1 | |- G = ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
|
| 2 | inss2 | |- ( ( F " ( k [,) +oo ) ) i^i RR* ) C_ RR* |
|
| 3 | infxrcl | |- ( ( ( F " ( k [,) +oo ) ) i^i RR* ) C_ RR* -> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* ) |
|
| 4 | 2 3 | mp1i | |- ( k e. RR -> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* ) |
| 5 | 1 4 | fmpti | |- G : RR --> RR* |