Metamath Proof Explorer


Theorem liminfgf

Description: Closure of the inferior limit function. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis liminfgf.1
|- G = ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) )
Assertion liminfgf
|- G : RR --> RR*

Proof

Step Hyp Ref Expression
1 liminfgf.1
 |-  G = ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) )
2 inss2
 |-  ( ( F " ( k [,) +oo ) ) i^i RR* ) C_ RR*
3 infxrcl
 |-  ( ( ( F " ( k [,) +oo ) ) i^i RR* ) C_ RR* -> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* )
4 2 3 mp1i
 |-  ( k e. RR -> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* )
5 1 4 fmpti
 |-  G : RR --> RR*