Step |
Hyp |
Ref |
Expression |
1 |
|
liminfval.1 |
|- G = ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
2 |
|
df-liminf |
|- liminf = ( x e. _V |-> sup ( ran ( k e. RR |-> inf ( ( ( x " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
3 |
|
imaeq1 |
|- ( x = F -> ( x " ( k [,) +oo ) ) = ( F " ( k [,) +oo ) ) ) |
4 |
3
|
ineq1d |
|- ( x = F -> ( ( x " ( k [,) +oo ) ) i^i RR* ) = ( ( F " ( k [,) +oo ) ) i^i RR* ) ) |
5 |
4
|
infeq1d |
|- ( x = F -> inf ( ( ( x " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) = inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
6 |
5
|
mpteq2dv |
|- ( x = F -> ( k e. RR |-> inf ( ( ( x " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) ) |
7 |
1
|
a1i |
|- ( x = F -> G = ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) ) |
8 |
6 7
|
eqtr4d |
|- ( x = F -> ( k e. RR |-> inf ( ( ( x " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = G ) |
9 |
8
|
rneqd |
|- ( x = F -> ran ( k e. RR |-> inf ( ( ( x " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ran G ) |
10 |
9
|
supeq1d |
|- ( x = F -> sup ( ran ( k e. RR |-> inf ( ( ( x " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) = sup ( ran G , RR* , < ) ) |
11 |
|
elex |
|- ( F e. V -> F e. _V ) |
12 |
|
xrltso |
|- < Or RR* |
13 |
12
|
supex |
|- sup ( ran G , RR* , < ) e. _V |
14 |
13
|
a1i |
|- ( F e. V -> sup ( ran G , RR* , < ) e. _V ) |
15 |
2 10 11 14
|
fvmptd3 |
|- ( F e. V -> ( liminf ` F ) = sup ( ran G , RR* , < ) ) |