Metamath Proof Explorer


Theorem liminfval

Description: The inferior limit of a set F . (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis liminfval.1 𝐺 = ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
Assertion liminfval ( 𝐹𝑉 → ( lim inf ‘ 𝐹 ) = sup ( ran 𝐺 , ℝ* , < ) )

Proof

Step Hyp Ref Expression
1 liminfval.1 𝐺 = ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
2 df-liminf lim inf = ( 𝑥 ∈ V ↦ sup ( ran ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) )
3 imaeq1 ( 𝑥 = 𝐹 → ( 𝑥 “ ( 𝑘 [,) +∞ ) ) = ( 𝐹 “ ( 𝑘 [,) +∞ ) ) )
4 3 ineq1d ( 𝑥 = 𝐹 → ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) = ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) )
5 4 infeq1d ( 𝑥 = 𝐹 → inf ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) = inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
6 5 mpteq2dv ( 𝑥 = 𝐹 → ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) )
7 1 a1i ( 𝑥 = 𝐹𝐺 = ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) )
8 6 7 eqtr4d ( 𝑥 = 𝐹 → ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = 𝐺 )
9 8 rneqd ( 𝑥 = 𝐹 → ran ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ran 𝐺 )
10 9 supeq1d ( 𝑥 = 𝐹 → sup ( ran ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) = sup ( ran 𝐺 , ℝ* , < ) )
11 elex ( 𝐹𝑉𝐹 ∈ V )
12 xrltso < Or ℝ*
13 12 supex sup ( ran 𝐺 , ℝ* , < ) ∈ V
14 13 a1i ( 𝐹𝑉 → sup ( ran 𝐺 , ℝ* , < ) ∈ V )
15 2 10 11 14 fvmptd3 ( 𝐹𝑉 → ( lim inf ‘ 𝐹 ) = sup ( ran 𝐺 , ℝ* , < ) )