| Step |
Hyp |
Ref |
Expression |
| 1 |
|
liminfval.1 |
⊢ 𝐺 = ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
| 2 |
|
df-liminf |
⊢ lim inf = ( 𝑥 ∈ V ↦ sup ( ran ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |
| 3 |
|
imaeq1 |
⊢ ( 𝑥 = 𝐹 → ( 𝑥 “ ( 𝑘 [,) +∞ ) ) = ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) |
| 4 |
3
|
ineq1d |
⊢ ( 𝑥 = 𝐹 → ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) = ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) |
| 5 |
4
|
infeq1d |
⊢ ( 𝑥 = 𝐹 → inf ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) = inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
| 6 |
5
|
mpteq2dv |
⊢ ( 𝑥 = 𝐹 → ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ) |
| 7 |
1
|
a1i |
⊢ ( 𝑥 = 𝐹 → 𝐺 = ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ) |
| 8 |
6 7
|
eqtr4d |
⊢ ( 𝑥 = 𝐹 → ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = 𝐺 ) |
| 9 |
8
|
rneqd |
⊢ ( 𝑥 = 𝐹 → ran ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ran 𝐺 ) |
| 10 |
9
|
supeq1d |
⊢ ( 𝑥 = 𝐹 → sup ( ran ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) = sup ( ran 𝐺 , ℝ* , < ) ) |
| 11 |
|
elex |
⊢ ( 𝐹 ∈ 𝑉 → 𝐹 ∈ V ) |
| 12 |
|
xrltso |
⊢ < Or ℝ* |
| 13 |
12
|
supex |
⊢ sup ( ran 𝐺 , ℝ* , < ) ∈ V |
| 14 |
13
|
a1i |
⊢ ( 𝐹 ∈ 𝑉 → sup ( ran 𝐺 , ℝ* , < ) ∈ V ) |
| 15 |
2 10 11 14
|
fvmptd3 |
⊢ ( 𝐹 ∈ 𝑉 → ( lim inf ‘ 𝐹 ) = sup ( ran 𝐺 , ℝ* , < ) ) |