| Step |
Hyp |
Ref |
Expression |
| 0 |
|
clsi |
⊢ lim inf |
| 1 |
|
vx |
⊢ 𝑥 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vk |
⊢ 𝑘 |
| 4 |
|
cr |
⊢ ℝ |
| 5 |
1
|
cv |
⊢ 𝑥 |
| 6 |
3
|
cv |
⊢ 𝑘 |
| 7 |
|
cico |
⊢ [,) |
| 8 |
|
cpnf |
⊢ +∞ |
| 9 |
6 8 7
|
co |
⊢ ( 𝑘 [,) +∞ ) |
| 10 |
5 9
|
cima |
⊢ ( 𝑥 “ ( 𝑘 [,) +∞ ) ) |
| 11 |
|
cxr |
⊢ ℝ* |
| 12 |
10 11
|
cin |
⊢ ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) |
| 13 |
|
clt |
⊢ < |
| 14 |
12 11 13
|
cinf |
⊢ inf ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) |
| 15 |
3 4 14
|
cmpt |
⊢ ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
| 16 |
15
|
crn |
⊢ ran ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
| 17 |
16 11 13
|
csup |
⊢ sup ( ran ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) |
| 18 |
1 2 17
|
cmpt |
⊢ ( 𝑥 ∈ V ↦ sup ( ran ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |
| 19 |
0 18
|
wceq |
⊢ lim inf = ( 𝑥 ∈ V ↦ sup ( ran ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |