| Step |
Hyp |
Ref |
Expression |
| 0 |
|
clsi |
|- liminf |
| 1 |
|
vx |
|- x |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vk |
|- k |
| 4 |
|
cr |
|- RR |
| 5 |
1
|
cv |
|- x |
| 6 |
3
|
cv |
|- k |
| 7 |
|
cico |
|- [,) |
| 8 |
|
cpnf |
|- +oo |
| 9 |
6 8 7
|
co |
|- ( k [,) +oo ) |
| 10 |
5 9
|
cima |
|- ( x " ( k [,) +oo ) ) |
| 11 |
|
cxr |
|- RR* |
| 12 |
10 11
|
cin |
|- ( ( x " ( k [,) +oo ) ) i^i RR* ) |
| 13 |
|
clt |
|- < |
| 14 |
12 11 13
|
cinf |
|- inf ( ( ( x " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) |
| 15 |
3 4 14
|
cmpt |
|- ( k e. RR |-> inf ( ( ( x " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 16 |
15
|
crn |
|- ran ( k e. RR |-> inf ( ( ( x " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 17 |
16 11 13
|
csup |
|- sup ( ran ( k e. RR |-> inf ( ( ( x " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) |
| 18 |
1 2 17
|
cmpt |
|- ( x e. _V |-> sup ( ran ( k e. RR |-> inf ( ( ( x " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
| 19 |
0 18
|
wceq |
|- liminf = ( x e. _V |-> sup ( ran ( k e. RR |-> inf ( ( ( x " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |