Step |
Hyp |
Ref |
Expression |
1 |
|
limsuplt2.1 |
|- ( ph -> B C_ RR ) |
2 |
|
limsuplt2.2 |
|- ( ph -> F : B --> RR* ) |
3 |
|
limsuplt2.3 |
|- ( ph -> A e. RR* ) |
4 |
|
eqid |
|- ( j e. RR |-> sup ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( j e. RR |-> sup ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
5 |
4
|
limsuplt |
|- ( ( B C_ RR /\ F : B --> RR* /\ A e. RR* ) -> ( ( limsup ` F ) < A <-> E. i e. RR ( ( j e. RR |-> sup ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` i ) < A ) ) |
6 |
1 2 3 5
|
syl3anc |
|- ( ph -> ( ( limsup ` F ) < A <-> E. i e. RR ( ( j e. RR |-> sup ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` i ) < A ) ) |
7 |
|
oveq1 |
|- ( j = i -> ( j [,) +oo ) = ( i [,) +oo ) ) |
8 |
7
|
imaeq2d |
|- ( j = i -> ( F " ( j [,) +oo ) ) = ( F " ( i [,) +oo ) ) ) |
9 |
8
|
ineq1d |
|- ( j = i -> ( ( F " ( j [,) +oo ) ) i^i RR* ) = ( ( F " ( i [,) +oo ) ) i^i RR* ) ) |
10 |
9
|
supeq1d |
|- ( j = i -> sup ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) = sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
11 |
|
simpr |
|- ( ( ph /\ i e. RR ) -> i e. RR ) |
12 |
|
xrltso |
|- < Or RR* |
13 |
12
|
supex |
|- sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) e. _V |
14 |
13
|
a1i |
|- ( ( ph /\ i e. RR ) -> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) e. _V ) |
15 |
4 10 11 14
|
fvmptd3 |
|- ( ( ph /\ i e. RR ) -> ( ( j e. RR |-> sup ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` i ) = sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
16 |
15
|
breq1d |
|- ( ( ph /\ i e. RR ) -> ( ( ( j e. RR |-> sup ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` i ) < A <-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) < A ) ) |
17 |
16
|
rexbidva |
|- ( ph -> ( E. i e. RR ( ( j e. RR |-> sup ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` i ) < A <-> E. i e. RR sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) < A ) ) |
18 |
|
oveq1 |
|- ( i = k -> ( i [,) +oo ) = ( k [,) +oo ) ) |
19 |
18
|
imaeq2d |
|- ( i = k -> ( F " ( i [,) +oo ) ) = ( F " ( k [,) +oo ) ) ) |
20 |
19
|
ineq1d |
|- ( i = k -> ( ( F " ( i [,) +oo ) ) i^i RR* ) = ( ( F " ( k [,) +oo ) ) i^i RR* ) ) |
21 |
20
|
supeq1d |
|- ( i = k -> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) = sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
22 |
21
|
breq1d |
|- ( i = k -> ( sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) < A <-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) < A ) ) |
23 |
22
|
cbvrexvw |
|- ( E. i e. RR sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) < A <-> E. k e. RR sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) < A ) |
24 |
23
|
a1i |
|- ( ph -> ( E. i e. RR sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) < A <-> E. k e. RR sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) < A ) ) |
25 |
6 17 24
|
3bitrd |
|- ( ph -> ( ( limsup ` F ) < A <-> E. k e. RR sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) < A ) ) |