Metamath Proof Explorer


Theorem limsuplt2

Description: The defining property of the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses limsuplt2.1 φ B
limsuplt2.2 φ F : B *
limsuplt2.3 φ A *
Assertion limsuplt2 φ lim sup F < A k sup F k +∞ * * < < A

Proof

Step Hyp Ref Expression
1 limsuplt2.1 φ B
2 limsuplt2.2 φ F : B *
3 limsuplt2.3 φ A *
4 eqid j sup F j +∞ * * < = j sup F j +∞ * * <
5 4 limsuplt B F : B * A * lim sup F < A i j sup F j +∞ * * < i < A
6 1 2 3 5 syl3anc φ lim sup F < A i j sup F j +∞ * * < i < A
7 oveq1 j = i j +∞ = i +∞
8 7 imaeq2d j = i F j +∞ = F i +∞
9 8 ineq1d j = i F j +∞ * = F i +∞ *
10 9 supeq1d j = i sup F j +∞ * * < = sup F i +∞ * * <
11 simpr φ i i
12 xrltso < Or *
13 12 supex sup F i +∞ * * < V
14 13 a1i φ i sup F i +∞ * * < V
15 4 10 11 14 fvmptd3 φ i j sup F j +∞ * * < i = sup F i +∞ * * <
16 15 breq1d φ i j sup F j +∞ * * < i < A sup F i +∞ * * < < A
17 16 rexbidva φ i j sup F j +∞ * * < i < A i sup F i +∞ * * < < A
18 oveq1 i = k i +∞ = k +∞
19 18 imaeq2d i = k F i +∞ = F k +∞
20 19 ineq1d i = k F i +∞ * = F k +∞ *
21 20 supeq1d i = k sup F i +∞ * * < = sup F k +∞ * * <
22 21 breq1d i = k sup F i +∞ * * < < A sup F k +∞ * * < < A
23 22 cbvrexvw i sup F i +∞ * * < < A k sup F k +∞ * * < < A
24 23 a1i φ i sup F i +∞ * * < < A k sup F k +∞ * * < < A
25 6 17 24 3bitrd φ lim sup F < A k sup F k +∞ * * < < A