Metamath Proof Explorer


Theorem liminfgord

Description: Ordering property of the inferior limit function. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Assertion liminfgord A B A B sup F A +∞ * * < sup F B +∞ * * <

Proof

Step Hyp Ref Expression
1 inss2 F A +∞ * *
2 1 a1i A B A B x F B +∞ * F A +∞ * *
3 rexr A A *
4 3 3ad2ant1 A B A B A *
5 simp3 A B A B A B
6 df-ico . = x * , y * z * | x z z < y
7 xrletr A * B * w * A B B w A w
8 6 6 7 ixxss1 A * A B B +∞ A +∞
9 4 5 8 syl2anc A B A B B +∞ A +∞
10 imass2 B +∞ A +∞ F B +∞ F A +∞
11 ssrin F B +∞ F A +∞ F B +∞ * F A +∞ *
12 9 10 11 3syl A B A B F B +∞ * F A +∞ *
13 12 sselda A B A B x F B +∞ * x F A +∞ *
14 infxrlb F A +∞ * * x F A +∞ * sup F A +∞ * * < x
15 2 13 14 syl2anc A B A B x F B +∞ * sup F A +∞ * * < x
16 15 ralrimiva A B A B x F B +∞ * sup F A +∞ * * < x
17 inss2 F B +∞ * *
18 infxrcl F A +∞ * * sup F A +∞ * * < *
19 1 18 ax-mp sup F A +∞ * * < *
20 infxrgelb F B +∞ * * sup F A +∞ * * < * sup F A +∞ * * < sup F B +∞ * * < x F B +∞ * sup F A +∞ * * < x
21 17 19 20 mp2an sup F A +∞ * * < sup F B +∞ * * < x F B +∞ * sup F A +∞ * * < x
22 16 21 sylibr A B A B sup F A +∞ * * < sup F B +∞ * * <