Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Limits
Inferior limit (lim inf)
liminfval
Next ⟩
climlimsup
Metamath Proof Explorer
Ascii
Unicode
Theorem
liminfval
Description:
The inferior limit of a set
F
.
(Contributed by
Glauco Siliprandi
, 2-Jan-2022)
Ref
Expression
Hypothesis
liminfval.1
⊢
G
=
k
∈
ℝ
⟼
sup
F
k
+∞
∩
ℝ
*
ℝ
*
<
Assertion
liminfval
⊢
F
∈
V
→
lim inf
⁡
F
=
sup
ran
⁡
G
ℝ
*
<
Proof
Step
Hyp
Ref
Expression
1
liminfval.1
⊢
G
=
k
∈
ℝ
⟼
sup
F
k
+∞
∩
ℝ
*
ℝ
*
<
2
df-liminf
⊢
lim inf
=
x
∈
V
⟼
sup
ran
⁡
k
∈
ℝ
⟼
sup
x
k
+∞
∩
ℝ
*
ℝ
*
<
ℝ
*
<
3
imaeq1
⊢
x
=
F
→
x
k
+∞
=
F
k
+∞
4
3
ineq1d
⊢
x
=
F
→
x
k
+∞
∩
ℝ
*
=
F
k
+∞
∩
ℝ
*
5
4
infeq1d
⊢
x
=
F
→
sup
x
k
+∞
∩
ℝ
*
ℝ
*
<
=
sup
F
k
+∞
∩
ℝ
*
ℝ
*
<
6
5
mpteq2dv
⊢
x
=
F
→
k
∈
ℝ
⟼
sup
x
k
+∞
∩
ℝ
*
ℝ
*
<
=
k
∈
ℝ
⟼
sup
F
k
+∞
∩
ℝ
*
ℝ
*
<
7
1
a1i
⊢
x
=
F
→
G
=
k
∈
ℝ
⟼
sup
F
k
+∞
∩
ℝ
*
ℝ
*
<
8
6
7
eqtr4d
⊢
x
=
F
→
k
∈
ℝ
⟼
sup
x
k
+∞
∩
ℝ
*
ℝ
*
<
=
G
9
8
rneqd
⊢
x
=
F
→
ran
⁡
k
∈
ℝ
⟼
sup
x
k
+∞
∩
ℝ
*
ℝ
*
<
=
ran
⁡
G
10
9
supeq1d
⊢
x
=
F
→
sup
ran
⁡
k
∈
ℝ
⟼
sup
x
k
+∞
∩
ℝ
*
ℝ
*
<
ℝ
*
<
=
sup
ran
⁡
G
ℝ
*
<
11
elex
⊢
F
∈
V
→
F
∈
V
12
xrltso
⊢
<
Or
ℝ
*
13
12
supex
⊢
sup
ran
⁡
G
ℝ
*
<
∈
V
14
13
a1i
⊢
F
∈
V
→
sup
ran
⁡
G
ℝ
*
<
∈
V
15
2
10
11
14
fvmptd3
⊢
F
∈
V
→
lim inf
⁡
F
=
sup
ran
⁡
G
ℝ
*
<