Metamath Proof Explorer


Theorem liminfval

Description: The inferior limit of a set F . (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis liminfval.1 G = k sup F k +∞ * * <
Assertion liminfval F V lim inf F = sup ran G * <

Proof

Step Hyp Ref Expression
1 liminfval.1 G = k sup F k +∞ * * <
2 df-liminf lim inf = x V sup ran k sup x k +∞ * * < * <
3 imaeq1 x = F x k +∞ = F k +∞
4 3 ineq1d x = F x k +∞ * = F k +∞ *
5 4 infeq1d x = F sup x k +∞ * * < = sup F k +∞ * * <
6 5 mpteq2dv x = F k sup x k +∞ * * < = k sup F k +∞ * * <
7 1 a1i x = F G = k sup F k +∞ * * <
8 6 7 eqtr4d x = F k sup x k +∞ * * < = G
9 8 rneqd x = F ran k sup x k +∞ * * < = ran G
10 9 supeq1d x = F sup ran k sup x k +∞ * * < * < = sup ran G * <
11 elex F V F V
12 xrltso < Or *
13 12 supex sup ran G * < V
14 13 a1i F V sup ran G * < V
15 2 10 11 14 fvmptd3 F V lim inf F = sup ran G * <