Step |
Hyp |
Ref |
Expression |
1 |
|
climlimsup.1 |
|- ( ph -> M e. ZZ ) |
2 |
|
climlimsup.2 |
|- Z = ( ZZ>= ` M ) |
3 |
|
climlimsup.3 |
|- ( ph -> F : Z --> RR ) |
4 |
3
|
adantr |
|- ( ( ph /\ F e. dom ~~> ) -> F : Z --> RR ) |
5 |
1
|
adantr |
|- ( ( ph /\ F e. dom ~~> ) -> M e. ZZ ) |
6 |
|
simpr |
|- ( ( ph /\ F e. dom ~~> ) -> F e. dom ~~> ) |
7 |
2
|
climcau |
|- ( ( M e. ZZ /\ F e. dom ~~> ) -> A. x e. RR+ E. m e. Z A. k e. ( ZZ>= ` m ) ( abs ` ( ( F ` k ) - ( F ` m ) ) ) < x ) |
8 |
5 6 7
|
syl2anc |
|- ( ( ph /\ F e. dom ~~> ) -> A. x e. RR+ E. m e. Z A. k e. ( ZZ>= ` m ) ( abs ` ( ( F ` k ) - ( F ` m ) ) ) < x ) |
9 |
2 4 8
|
caurcvg |
|- ( ( ph /\ F e. dom ~~> ) -> F ~~> ( limsup ` F ) ) |
10 |
|
climrel |
|- Rel ~~> |
11 |
|
releldm |
|- ( ( Rel ~~> /\ F ~~> ( limsup ` F ) ) -> F e. dom ~~> ) |
12 |
10 11
|
mpan |
|- ( F ~~> ( limsup ` F ) -> F e. dom ~~> ) |
13 |
12
|
adantl |
|- ( ( ph /\ F ~~> ( limsup ` F ) ) -> F e. dom ~~> ) |
14 |
9 13
|
impbida |
|- ( ph -> ( F e. dom ~~> <-> F ~~> ( limsup ` F ) ) ) |