| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limsupge.b |
|- ( ph -> B C_ RR ) |
| 2 |
|
limsupge.f |
|- ( ph -> F : B --> RR* ) |
| 3 |
|
limsupge.a |
|- ( ph -> A e. RR* ) |
| 4 |
|
eqid |
|- ( j e. RR |-> sup ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( j e. RR |-> sup ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 5 |
4
|
limsuple |
|- ( ( B C_ RR /\ F : B --> RR* /\ A e. RR* ) -> ( A <_ ( limsup ` F ) <-> A. i e. RR A <_ ( ( j e. RR |-> sup ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` i ) ) ) |
| 6 |
1 2 3 5
|
syl3anc |
|- ( ph -> ( A <_ ( limsup ` F ) <-> A. i e. RR A <_ ( ( j e. RR |-> sup ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` i ) ) ) |
| 7 |
|
oveq1 |
|- ( j = i -> ( j [,) +oo ) = ( i [,) +oo ) ) |
| 8 |
7
|
imaeq2d |
|- ( j = i -> ( F " ( j [,) +oo ) ) = ( F " ( i [,) +oo ) ) ) |
| 9 |
8
|
ineq1d |
|- ( j = i -> ( ( F " ( j [,) +oo ) ) i^i RR* ) = ( ( F " ( i [,) +oo ) ) i^i RR* ) ) |
| 10 |
9
|
supeq1d |
|- ( j = i -> sup ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) = sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 11 |
|
simpr |
|- ( ( ph /\ i e. RR ) -> i e. RR ) |
| 12 |
|
xrltso |
|- < Or RR* |
| 13 |
12
|
supex |
|- sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) e. _V |
| 14 |
13
|
a1i |
|- ( ( ph /\ i e. RR ) -> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) e. _V ) |
| 15 |
4 10 11 14
|
fvmptd3 |
|- ( ( ph /\ i e. RR ) -> ( ( j e. RR |-> sup ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` i ) = sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 16 |
15
|
breq2d |
|- ( ( ph /\ i e. RR ) -> ( A <_ ( ( j e. RR |-> sup ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` i ) <-> A <_ sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) ) |
| 17 |
16
|
ralbidva |
|- ( ph -> ( A. i e. RR A <_ ( ( j e. RR |-> sup ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` i ) <-> A. i e. RR A <_ sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) ) |
| 18 |
6 17
|
bitrd |
|- ( ph -> ( A <_ ( limsup ` F ) <-> A. i e. RR A <_ sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) ) |
| 19 |
|
oveq1 |
|- ( i = k -> ( i [,) +oo ) = ( k [,) +oo ) ) |
| 20 |
19
|
imaeq2d |
|- ( i = k -> ( F " ( i [,) +oo ) ) = ( F " ( k [,) +oo ) ) ) |
| 21 |
20
|
ineq1d |
|- ( i = k -> ( ( F " ( i [,) +oo ) ) i^i RR* ) = ( ( F " ( k [,) +oo ) ) i^i RR* ) ) |
| 22 |
21
|
supeq1d |
|- ( i = k -> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) = sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 23 |
22
|
breq2d |
|- ( i = k -> ( A <_ sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <-> A <_ sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) ) |
| 24 |
23
|
cbvralvw |
|- ( A. i e. RR A <_ sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <-> A. k e. RR A <_ sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 25 |
24
|
a1i |
|- ( ph -> ( A. i e. RR A <_ sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <-> A. k e. RR A <_ sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) ) |
| 26 |
18 25
|
bitrd |
|- ( ph -> ( A <_ ( limsup ` F ) <-> A. k e. RR A <_ sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) ) |