Metamath Proof Explorer


Theorem limsupge

Description: The defining property of the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses limsupge.b φB
limsupge.f φF:B*
limsupge.a φA*
Assertion limsupge φAlim supFkAsupFk+∞**<

Proof

Step Hyp Ref Expression
1 limsupge.b φB
2 limsupge.f φF:B*
3 limsupge.a φA*
4 eqid jsupFj+∞**<=jsupFj+∞**<
5 4 limsuple BF:B*A*Alim supFiAjsupFj+∞**<i
6 1 2 3 5 syl3anc φAlim supFiAjsupFj+∞**<i
7 oveq1 j=ij+∞=i+∞
8 7 imaeq2d j=iFj+∞=Fi+∞
9 8 ineq1d j=iFj+∞*=Fi+∞*
10 9 supeq1d j=isupFj+∞**<=supFi+∞**<
11 simpr φii
12 xrltso <Or*
13 12 supex supFi+∞**<V
14 13 a1i φisupFi+∞**<V
15 4 10 11 14 fvmptd3 φijsupFj+∞**<i=supFi+∞**<
16 15 breq2d φiAjsupFj+∞**<iAsupFi+∞**<
17 16 ralbidva φiAjsupFj+∞**<iiAsupFi+∞**<
18 6 17 bitrd φAlim supFiAsupFi+∞**<
19 oveq1 i=ki+∞=k+∞
20 19 imaeq2d i=kFi+∞=Fk+∞
21 20 ineq1d i=kFi+∞*=Fk+∞*
22 21 supeq1d i=ksupFi+∞**<=supFk+∞**<
23 22 breq2d i=kAsupFi+∞**<AsupFk+∞**<
24 23 cbvralvw iAsupFi+∞**<kAsupFk+∞**<
25 24 a1i φiAsupFi+∞**<kAsupFk+∞**<
26 18 25 bitrd φAlim supFkAsupFk+∞**<