Description: The defining property of the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | limsupge.b | |
|
limsupge.f | |
||
limsupge.a | |
||
Assertion | limsupge | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupge.b | |
|
2 | limsupge.f | |
|
3 | limsupge.a | |
|
4 | eqid | |
|
5 | 4 | limsuple | |
6 | 1 2 3 5 | syl3anc | |
7 | oveq1 | |
|
8 | 7 | imaeq2d | |
9 | 8 | ineq1d | |
10 | 9 | supeq1d | |
11 | simpr | |
|
12 | xrltso | |
|
13 | 12 | supex | |
14 | 13 | a1i | |
15 | 4 10 11 14 | fvmptd3 | |
16 | 15 | breq2d | |
17 | 16 | ralbidva | |
18 | 6 17 | bitrd | |
19 | oveq1 | |
|
20 | 19 | imaeq2d | |
21 | 20 | ineq1d | |
22 | 21 | supeq1d | |
23 | 22 | breq2d | |
24 | 23 | cbvralvw | |
25 | 24 | a1i | |
26 | 18 25 | bitrd | |