Metamath Proof Explorer


Theorem limsuple

Description: The defining property of the superior limit. (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by AV, 12-Sep-2020)

Ref Expression
Hypothesis limsupval.1 G=ksupFk+∞**<
Assertion limsuple BF:B*A*Alim supFjAGj

Proof

Step Hyp Ref Expression
1 limsupval.1 G=ksupFk+∞**<
2 simp2 BF:B*A*F:B*
3 reex V
4 3 ssex BBV
5 4 3ad2ant1 BF:B*A*BV
6 xrex *V
7 6 a1i BF:B*A**V
8 fex2 F:B*BV*VFV
9 2 5 7 8 syl3anc BF:B*A*FV
10 1 limsupval FVlim supF=supranG*<
11 9 10 syl BF:B*A*lim supF=supranG*<
12 11 breq2d BF:B*A*Alim supFAsupranG*<
13 1 limsupgf G:*
14 frn G:*ranG*
15 13 14 ax-mp ranG*
16 simp3 BF:B*A*A*
17 infxrgelb ranG*A*AsupranG*<xranGAx
18 15 16 17 sylancr BF:B*A*AsupranG*<xranGAx
19 ffn G:*GFn
20 13 19 ax-mp GFn
21 breq2 x=GjAxAGj
22 21 ralrn GFnxranGAxjAGj
23 20 22 ax-mp xranGAxjAGj
24 18 23 bitrdi BF:B*A*AsupranG*<jAGj
25 12 24 bitrd BF:B*A*Alim supFjAGj