Step |
Hyp |
Ref |
Expression |
1 |
|
limsupval.1 |
|- G = ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
2 |
|
simp2 |
|- ( ( B C_ RR /\ F : B --> RR* /\ A e. RR* ) -> F : B --> RR* ) |
3 |
|
reex |
|- RR e. _V |
4 |
3
|
ssex |
|- ( B C_ RR -> B e. _V ) |
5 |
4
|
3ad2ant1 |
|- ( ( B C_ RR /\ F : B --> RR* /\ A e. RR* ) -> B e. _V ) |
6 |
|
xrex |
|- RR* e. _V |
7 |
6
|
a1i |
|- ( ( B C_ RR /\ F : B --> RR* /\ A e. RR* ) -> RR* e. _V ) |
8 |
|
fex2 |
|- ( ( F : B --> RR* /\ B e. _V /\ RR* e. _V ) -> F e. _V ) |
9 |
2 5 7 8
|
syl3anc |
|- ( ( B C_ RR /\ F : B --> RR* /\ A e. RR* ) -> F e. _V ) |
10 |
1
|
limsupval |
|- ( F e. _V -> ( limsup ` F ) = inf ( ran G , RR* , < ) ) |
11 |
9 10
|
syl |
|- ( ( B C_ RR /\ F : B --> RR* /\ A e. RR* ) -> ( limsup ` F ) = inf ( ran G , RR* , < ) ) |
12 |
11
|
breq2d |
|- ( ( B C_ RR /\ F : B --> RR* /\ A e. RR* ) -> ( A <_ ( limsup ` F ) <-> A <_ inf ( ran G , RR* , < ) ) ) |
13 |
1
|
limsupgf |
|- G : RR --> RR* |
14 |
|
frn |
|- ( G : RR --> RR* -> ran G C_ RR* ) |
15 |
13 14
|
ax-mp |
|- ran G C_ RR* |
16 |
|
simp3 |
|- ( ( B C_ RR /\ F : B --> RR* /\ A e. RR* ) -> A e. RR* ) |
17 |
|
infxrgelb |
|- ( ( ran G C_ RR* /\ A e. RR* ) -> ( A <_ inf ( ran G , RR* , < ) <-> A. x e. ran G A <_ x ) ) |
18 |
15 16 17
|
sylancr |
|- ( ( B C_ RR /\ F : B --> RR* /\ A e. RR* ) -> ( A <_ inf ( ran G , RR* , < ) <-> A. x e. ran G A <_ x ) ) |
19 |
|
ffn |
|- ( G : RR --> RR* -> G Fn RR ) |
20 |
13 19
|
ax-mp |
|- G Fn RR |
21 |
|
breq2 |
|- ( x = ( G ` j ) -> ( A <_ x <-> A <_ ( G ` j ) ) ) |
22 |
21
|
ralrn |
|- ( G Fn RR -> ( A. x e. ran G A <_ x <-> A. j e. RR A <_ ( G ` j ) ) ) |
23 |
20 22
|
ax-mp |
|- ( A. x e. ran G A <_ x <-> A. j e. RR A <_ ( G ` j ) ) |
24 |
18 23
|
bitrdi |
|- ( ( B C_ RR /\ F : B --> RR* /\ A e. RR* ) -> ( A <_ inf ( ran G , RR* , < ) <-> A. j e. RR A <_ ( G ` j ) ) ) |
25 |
12 24
|
bitrd |
|- ( ( B C_ RR /\ F : B --> RR* /\ A e. RR* ) -> ( A <_ ( limsup ` F ) <-> A. j e. RR A <_ ( G ` j ) ) ) |