Metamath Proof Explorer


Theorem limsupge

Description: The defining property of the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses limsupge.b ( 𝜑𝐵 ⊆ ℝ )
limsupge.f ( 𝜑𝐹 : 𝐵 ⟶ ℝ* )
limsupge.a ( 𝜑𝐴 ∈ ℝ* )
Assertion limsupge ( 𝜑 → ( 𝐴 ≤ ( lim sup ‘ 𝐹 ) ↔ ∀ 𝑘 ∈ ℝ 𝐴 ≤ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) )

Proof

Step Hyp Ref Expression
1 limsupge.b ( 𝜑𝐵 ⊆ ℝ )
2 limsupge.f ( 𝜑𝐹 : 𝐵 ⟶ ℝ* )
3 limsupge.a ( 𝜑𝐴 ∈ ℝ* )
4 eqid ( 𝑗 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑗 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
5 4 limsuple ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ*𝐴 ∈ ℝ* ) → ( 𝐴 ≤ ( lim sup ‘ 𝐹 ) ↔ ∀ 𝑖 ∈ ℝ 𝐴 ≤ ( ( 𝑗 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑖 ) ) )
6 1 2 3 5 syl3anc ( 𝜑 → ( 𝐴 ≤ ( lim sup ‘ 𝐹 ) ↔ ∀ 𝑖 ∈ ℝ 𝐴 ≤ ( ( 𝑗 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑖 ) ) )
7 oveq1 ( 𝑗 = 𝑖 → ( 𝑗 [,) +∞ ) = ( 𝑖 [,) +∞ ) )
8 7 imaeq2d ( 𝑗 = 𝑖 → ( 𝐹 “ ( 𝑗 [,) +∞ ) ) = ( 𝐹 “ ( 𝑖 [,) +∞ ) ) )
9 8 ineq1d ( 𝑗 = 𝑖 → ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) = ( ( 𝐹 “ ( 𝑖 [,) +∞ ) ) ∩ ℝ* ) )
10 9 supeq1d ( 𝑗 = 𝑖 → sup ( ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) = sup ( ( ( 𝐹 “ ( 𝑖 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
11 simpr ( ( 𝜑𝑖 ∈ ℝ ) → 𝑖 ∈ ℝ )
12 xrltso < Or ℝ*
13 12 supex sup ( ( ( 𝐹 “ ( 𝑖 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ V
14 13 a1i ( ( 𝜑𝑖 ∈ ℝ ) → sup ( ( ( 𝐹 “ ( 𝑖 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ V )
15 4 10 11 14 fvmptd3 ( ( 𝜑𝑖 ∈ ℝ ) → ( ( 𝑗 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑖 ) = sup ( ( ( 𝐹 “ ( 𝑖 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
16 15 breq2d ( ( 𝜑𝑖 ∈ ℝ ) → ( 𝐴 ≤ ( ( 𝑗 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑖 ) ↔ 𝐴 ≤ sup ( ( ( 𝐹 “ ( 𝑖 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) )
17 16 ralbidva ( 𝜑 → ( ∀ 𝑖 ∈ ℝ 𝐴 ≤ ( ( 𝑗 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑖 ) ↔ ∀ 𝑖 ∈ ℝ 𝐴 ≤ sup ( ( ( 𝐹 “ ( 𝑖 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) )
18 6 17 bitrd ( 𝜑 → ( 𝐴 ≤ ( lim sup ‘ 𝐹 ) ↔ ∀ 𝑖 ∈ ℝ 𝐴 ≤ sup ( ( ( 𝐹 “ ( 𝑖 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) )
19 oveq1 ( 𝑖 = 𝑘 → ( 𝑖 [,) +∞ ) = ( 𝑘 [,) +∞ ) )
20 19 imaeq2d ( 𝑖 = 𝑘 → ( 𝐹 “ ( 𝑖 [,) +∞ ) ) = ( 𝐹 “ ( 𝑘 [,) +∞ ) ) )
21 20 ineq1d ( 𝑖 = 𝑘 → ( ( 𝐹 “ ( 𝑖 [,) +∞ ) ) ∩ ℝ* ) = ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) )
22 21 supeq1d ( 𝑖 = 𝑘 → sup ( ( ( 𝐹 “ ( 𝑖 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) = sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
23 22 breq2d ( 𝑖 = 𝑘 → ( 𝐴 ≤ sup ( ( ( 𝐹 “ ( 𝑖 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ↔ 𝐴 ≤ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) )
24 23 cbvralvw ( ∀ 𝑖 ∈ ℝ 𝐴 ≤ sup ( ( ( 𝐹 “ ( 𝑖 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ↔ ∀ 𝑘 ∈ ℝ 𝐴 ≤ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
25 24 a1i ( 𝜑 → ( ∀ 𝑖 ∈ ℝ 𝐴 ≤ sup ( ( ( 𝐹 “ ( 𝑖 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ↔ ∀ 𝑘 ∈ ℝ 𝐴 ≤ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) )
26 18 25 bitrd ( 𝜑 → ( 𝐴 ≤ ( lim sup ‘ 𝐹 ) ↔ ∀ 𝑘 ∈ ℝ 𝐴 ≤ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) )