| Step |
Hyp |
Ref |
Expression |
| 1 |
|
liminfgval.1 |
⊢ 𝐺 = ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
| 2 |
|
oveq1 |
⊢ ( 𝑘 = 𝑀 → ( 𝑘 [,) +∞ ) = ( 𝑀 [,) +∞ ) ) |
| 3 |
2
|
imaeq2d |
⊢ ( 𝑘 = 𝑀 → ( 𝐹 “ ( 𝑘 [,) +∞ ) ) = ( 𝐹 “ ( 𝑀 [,) +∞ ) ) ) |
| 4 |
3
|
ineq1d |
⊢ ( 𝑘 = 𝑀 → ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) = ( ( 𝐹 “ ( 𝑀 [,) +∞ ) ) ∩ ℝ* ) ) |
| 5 |
4
|
infeq1d |
⊢ ( 𝑘 = 𝑀 → inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) = inf ( ( ( 𝐹 “ ( 𝑀 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
| 6 |
|
xrltso |
⊢ < Or ℝ* |
| 7 |
6
|
infex |
⊢ inf ( ( ( 𝐹 “ ( 𝑀 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ V |
| 8 |
5 1 7
|
fvmpt |
⊢ ( 𝑀 ∈ ℝ → ( 𝐺 ‘ 𝑀 ) = inf ( ( ( 𝐹 “ ( 𝑀 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |