| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
| 2 |
1
|
liminfval |
⊢ ( 𝐹 ∈ 𝑉 → ( lim inf ‘ 𝐹 ) = sup ( ran ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |
| 3 |
|
nfv |
⊢ Ⅎ 𝑘 𝐹 ∈ 𝑉 |
| 4 |
|
inss2 |
⊢ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* |
| 5 |
|
infxrcl |
⊢ ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* → inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ ℝ* ) |
| 6 |
4 5
|
ax-mp |
⊢ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ ℝ* |
| 7 |
6
|
a1i |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑘 ∈ ℝ ) → inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ ℝ* ) |
| 8 |
3 1 7
|
rnmptssd |
⊢ ( 𝐹 ∈ 𝑉 → ran ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ⊆ ℝ* ) |
| 9 |
8
|
supxrcld |
⊢ ( 𝐹 ∈ 𝑉 → sup ( ran ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ∈ ℝ* ) |
| 10 |
2 9
|
eqeltrd |
⊢ ( 𝐹 ∈ 𝑉 → ( lim inf ‘ 𝐹 ) ∈ ℝ* ) |