Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
2 |
1
|
liminfval |
|- ( F e. V -> ( liminf ` F ) = sup ( ran ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
3 |
|
nfv |
|- F/ k F e. V |
4 |
|
inss2 |
|- ( ( F " ( k [,) +oo ) ) i^i RR* ) C_ RR* |
5 |
|
infxrcl |
|- ( ( ( F " ( k [,) +oo ) ) i^i RR* ) C_ RR* -> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* ) |
6 |
4 5
|
ax-mp |
|- inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* |
7 |
6
|
a1i |
|- ( ( F e. V /\ k e. RR ) -> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* ) |
8 |
3 1 7
|
rnmptssd |
|- ( F e. V -> ran ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) C_ RR* ) |
9 |
8
|
supxrcld |
|- ( F e. V -> sup ( ran ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) e. RR* ) |
10 |
2 9
|
eqeltrd |
|- ( F e. V -> ( liminf ` F ) e. RR* ) |