Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Limits
Inferior limit (lim inf)
liminfcl
Next ⟩
liminfvald
Metamath Proof Explorer
Ascii
Unicode
Theorem
liminfcl
Description:
Closure of the inferior limit.
(Contributed by
Glauco Siliprandi
, 2-Jan-2022)
Ref
Expression
Assertion
liminfcl
⊢
F
∈
V
→
lim inf
⁡
F
∈
ℝ
*
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
k
∈
ℝ
⟼
sup
F
k
+∞
∩
ℝ
*
ℝ
*
<
=
k
∈
ℝ
⟼
sup
F
k
+∞
∩
ℝ
*
ℝ
*
<
2
1
liminfval
⊢
F
∈
V
→
lim inf
⁡
F
=
sup
ran
⁡
k
∈
ℝ
⟼
sup
F
k
+∞
∩
ℝ
*
ℝ
*
<
ℝ
*
<
3
nfv
⊢
Ⅎ
k
F
∈
V
4
inss2
⊢
F
k
+∞
∩
ℝ
*
⊆
ℝ
*
5
infxrcl
⊢
F
k
+∞
∩
ℝ
*
⊆
ℝ
*
→
sup
F
k
+∞
∩
ℝ
*
ℝ
*
<
∈
ℝ
*
6
4
5
ax-mp
⊢
sup
F
k
+∞
∩
ℝ
*
ℝ
*
<
∈
ℝ
*
7
6
a1i
⊢
F
∈
V
∧
k
∈
ℝ
→
sup
F
k
+∞
∩
ℝ
*
ℝ
*
<
∈
ℝ
*
8
3
1
7
rnmptssd
⊢
F
∈
V
→
ran
⁡
k
∈
ℝ
⟼
sup
F
k
+∞
∩
ℝ
*
ℝ
*
<
⊆
ℝ
*
9
8
supxrcld
⊢
F
∈
V
→
sup
ran
⁡
k
∈
ℝ
⟼
sup
F
k
+∞
∩
ℝ
*
ℝ
*
<
ℝ
*
<
∈
ℝ
*
10
2
9
eqeltrd
⊢
F
∈
V
→
lim inf
⁡
F
∈
ℝ
*