Metamath Proof Explorer


Theorem liminfcl

Description: Closure of the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Assertion liminfcl F V lim inf F *

Proof

Step Hyp Ref Expression
1 eqid k sup F k +∞ * * < = k sup F k +∞ * * <
2 1 liminfval F V lim inf F = sup ran k sup F k +∞ * * < * <
3 nfv k F V
4 inss2 F k +∞ * *
5 infxrcl F k +∞ * * sup F k +∞ * * < *
6 4 5 ax-mp sup F k +∞ * * < *
7 6 a1i F V k sup F k +∞ * * < *
8 3 1 7 rnmptssd F V ran k sup F k +∞ * * < *
9 8 supxrcld F V sup ran k sup F k +∞ * * < * < *
10 2 9 eqeltrd F V lim inf F *