Description: The inferior limit of a set F . (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | liminfvald.1 | |- ( ph -> F e. V ) |
|
liminfvald.2 | |- G = ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
||
Assertion | liminfvald | |- ( ph -> ( liminf ` F ) = sup ( ran G , RR* , < ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | liminfvald.1 | |- ( ph -> F e. V ) |
|
2 | liminfvald.2 | |- G = ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
|
3 | 2 | liminfval | |- ( F e. V -> ( liminf ` F ) = sup ( ran G , RR* , < ) ) |
4 | 1 3 | syl | |- ( ph -> ( liminf ` F ) = sup ( ran G , RR* , < ) ) |