Metamath Proof Explorer


Theorem liminfvald

Description: The inferior limit of a set F . (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfvald.1
|- ( ph -> F e. V )
liminfvald.2
|- G = ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) )
Assertion liminfvald
|- ( ph -> ( liminf ` F ) = sup ( ran G , RR* , < ) )

Proof

Step Hyp Ref Expression
1 liminfvald.1
 |-  ( ph -> F e. V )
2 liminfvald.2
 |-  G = ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) )
3 2 liminfval
 |-  ( F e. V -> ( liminf ` F ) = sup ( ran G , RR* , < ) )
4 1 3 syl
 |-  ( ph -> ( liminf ` F ) = sup ( ran G , RR* , < ) )