| Step | Hyp | Ref | Expression | 
						
							| 1 |  | limsupval5.1 |  |-  F/ k ph | 
						
							| 2 |  | limsupval5.2 |  |-  ( ph -> A e. V ) | 
						
							| 3 |  | limsupval5.3 |  |-  ( ph -> F : A --> RR* ) | 
						
							| 4 |  | limsupval5.4 |  |-  G = ( k e. RR |-> inf ( ( F " ( k [,) +oo ) ) , RR* , < ) ) | 
						
							| 5 | 3 2 | fexd |  |-  ( ph -> F e. _V ) | 
						
							| 6 |  | eqid |  |-  ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) | 
						
							| 7 | 6 | liminfval |  |-  ( F e. _V -> ( liminf ` F ) = sup ( ran ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) | 
						
							| 8 | 5 7 | syl |  |-  ( ph -> ( liminf ` F ) = sup ( ran ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) | 
						
							| 9 | 4 | a1i |  |-  ( ph -> G = ( k e. RR |-> inf ( ( F " ( k [,) +oo ) ) , RR* , < ) ) ) | 
						
							| 10 | 3 | fimassd |  |-  ( ph -> ( F " ( k [,) +oo ) ) C_ RR* ) | 
						
							| 11 |  | dfss2 |  |-  ( ( F " ( k [,) +oo ) ) C_ RR* <-> ( ( F " ( k [,) +oo ) ) i^i RR* ) = ( F " ( k [,) +oo ) ) ) | 
						
							| 12 | 10 11 | sylib |  |-  ( ph -> ( ( F " ( k [,) +oo ) ) i^i RR* ) = ( F " ( k [,) +oo ) ) ) | 
						
							| 13 | 12 | eqcomd |  |-  ( ph -> ( F " ( k [,) +oo ) ) = ( ( F " ( k [,) +oo ) ) i^i RR* ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ph /\ k e. RR ) -> ( F " ( k [,) +oo ) ) = ( ( F " ( k [,) +oo ) ) i^i RR* ) ) | 
						
							| 15 | 14 | infeq1d |  |-  ( ( ph /\ k e. RR ) -> inf ( ( F " ( k [,) +oo ) ) , RR* , < ) = inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) | 
						
							| 16 | 1 15 | mpteq2da |  |-  ( ph -> ( k e. RR |-> inf ( ( F " ( k [,) +oo ) ) , RR* , < ) ) = ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) ) | 
						
							| 17 | 9 16 | eqtr2d |  |-  ( ph -> ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = G ) | 
						
							| 18 | 17 | rneqd |  |-  ( ph -> ran ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ran G ) | 
						
							| 19 | 18 | supeq1d |  |-  ( ph -> sup ( ran ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) = sup ( ran G , RR* , < ) ) | 
						
							| 20 | 8 19 | eqtrd |  |-  ( ph -> ( liminf ` F ) = sup ( ran G , RR* , < ) ) |