Step |
Hyp |
Ref |
Expression |
1 |
|
limsupval5.1 |
|- F/ k ph |
2 |
|
limsupval5.2 |
|- ( ph -> A e. V ) |
3 |
|
limsupval5.3 |
|- ( ph -> F : A --> RR* ) |
4 |
|
limsupval5.4 |
|- G = ( k e. RR |-> inf ( ( F " ( k [,) +oo ) ) , RR* , < ) ) |
5 |
3 2
|
fexd |
|- ( ph -> F e. _V ) |
6 |
|
eqid |
|- ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
7 |
6
|
liminfval |
|- ( F e. _V -> ( liminf ` F ) = sup ( ran ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
8 |
5 7
|
syl |
|- ( ph -> ( liminf ` F ) = sup ( ran ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
9 |
4
|
a1i |
|- ( ph -> G = ( k e. RR |-> inf ( ( F " ( k [,) +oo ) ) , RR* , < ) ) ) |
10 |
3
|
fimassd |
|- ( ph -> ( F " ( k [,) +oo ) ) C_ RR* ) |
11 |
|
df-ss |
|- ( ( F " ( k [,) +oo ) ) C_ RR* <-> ( ( F " ( k [,) +oo ) ) i^i RR* ) = ( F " ( k [,) +oo ) ) ) |
12 |
10 11
|
sylib |
|- ( ph -> ( ( F " ( k [,) +oo ) ) i^i RR* ) = ( F " ( k [,) +oo ) ) ) |
13 |
12
|
eqcomd |
|- ( ph -> ( F " ( k [,) +oo ) ) = ( ( F " ( k [,) +oo ) ) i^i RR* ) ) |
14 |
13
|
adantr |
|- ( ( ph /\ k e. RR ) -> ( F " ( k [,) +oo ) ) = ( ( F " ( k [,) +oo ) ) i^i RR* ) ) |
15 |
14
|
infeq1d |
|- ( ( ph /\ k e. RR ) -> inf ( ( F " ( k [,) +oo ) ) , RR* , < ) = inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
16 |
1 15
|
mpteq2da |
|- ( ph -> ( k e. RR |-> inf ( ( F " ( k [,) +oo ) ) , RR* , < ) ) = ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) ) |
17 |
9 16
|
eqtr2d |
|- ( ph -> ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = G ) |
18 |
17
|
rneqd |
|- ( ph -> ran ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ran G ) |
19 |
18
|
supeq1d |
|- ( ph -> sup ( ran ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) = sup ( ran G , RR* , < ) ) |
20 |
8 19
|
eqtrd |
|- ( ph -> ( liminf ` F ) = sup ( ran G , RR* , < ) ) |