| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limsupresxr.1 |
|- ( ph -> F e. V ) |
| 2 |
|
limsupresxr.2 |
|- ( ph -> Fun F ) |
| 3 |
|
limsupresxr.3 |
|- A = ( `' F " RR* ) |
| 4 |
|
resimass |
|- ( ( F |` A ) " ( k [,) +oo ) ) C_ ( F " ( k [,) +oo ) ) |
| 5 |
4
|
a1i |
|- ( ph -> ( ( F |` A ) " ( k [,) +oo ) ) C_ ( F " ( k [,) +oo ) ) ) |
| 6 |
5
|
ssrind |
|- ( ph -> ( ( ( F |` A ) " ( k [,) +oo ) ) i^i RR* ) C_ ( ( F " ( k [,) +oo ) ) i^i RR* ) ) |
| 7 |
2
|
funfnd |
|- ( ph -> F Fn dom F ) |
| 8 |
|
elinel1 |
|- ( y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) -> y e. ( F " ( k [,) +oo ) ) ) |
| 9 |
|
fvelima2 |
|- ( ( F Fn dom F /\ y e. ( F " ( k [,) +oo ) ) ) -> E. x e. ( dom F i^i ( k [,) +oo ) ) ( F ` x ) = y ) |
| 10 |
7 8 9
|
syl2an |
|- ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) -> E. x e. ( dom F i^i ( k [,) +oo ) ) ( F ` x ) = y ) |
| 11 |
|
elinel1 |
|- ( x e. ( dom F i^i ( k [,) +oo ) ) -> x e. dom F ) |
| 12 |
11
|
3ad2ant2 |
|- ( ( y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) /\ x e. ( dom F i^i ( k [,) +oo ) ) /\ ( F ` x ) = y ) -> x e. dom F ) |
| 13 |
|
simpr |
|- ( ( y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) /\ ( F ` x ) = y ) -> ( F ` x ) = y ) |
| 14 |
|
elinel2 |
|- ( y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) -> y e. RR* ) |
| 15 |
14
|
adantr |
|- ( ( y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) /\ ( F ` x ) = y ) -> y e. RR* ) |
| 16 |
13 15
|
eqeltrd |
|- ( ( y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) /\ ( F ` x ) = y ) -> ( F ` x ) e. RR* ) |
| 17 |
16
|
3adant2 |
|- ( ( y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) /\ x e. ( dom F i^i ( k [,) +oo ) ) /\ ( F ` x ) = y ) -> ( F ` x ) e. RR* ) |
| 18 |
12 17
|
jca |
|- ( ( y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) /\ x e. ( dom F i^i ( k [,) +oo ) ) /\ ( F ` x ) = y ) -> ( x e. dom F /\ ( F ` x ) e. RR* ) ) |
| 19 |
18
|
3adant1l |
|- ( ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) /\ x e. ( dom F i^i ( k [,) +oo ) ) /\ ( F ` x ) = y ) -> ( x e. dom F /\ ( F ` x ) e. RR* ) ) |
| 20 |
|
simp1l |
|- ( ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) /\ x e. ( dom F i^i ( k [,) +oo ) ) /\ ( F ` x ) = y ) -> ph ) |
| 21 |
|
elpreima |
|- ( F Fn dom F -> ( x e. ( `' F " RR* ) <-> ( x e. dom F /\ ( F ` x ) e. RR* ) ) ) |
| 22 |
7 21
|
syl |
|- ( ph -> ( x e. ( `' F " RR* ) <-> ( x e. dom F /\ ( F ` x ) e. RR* ) ) ) |
| 23 |
20 22
|
syl |
|- ( ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) /\ x e. ( dom F i^i ( k [,) +oo ) ) /\ ( F ` x ) = y ) -> ( x e. ( `' F " RR* ) <-> ( x e. dom F /\ ( F ` x ) e. RR* ) ) ) |
| 24 |
19 23
|
mpbird |
|- ( ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) /\ x e. ( dom F i^i ( k [,) +oo ) ) /\ ( F ` x ) = y ) -> x e. ( `' F " RR* ) ) |
| 25 |
24 3
|
eleqtrrdi |
|- ( ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) /\ x e. ( dom F i^i ( k [,) +oo ) ) /\ ( F ` x ) = y ) -> x e. A ) |
| 26 |
25
|
3expa |
|- ( ( ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) /\ x e. ( dom F i^i ( k [,) +oo ) ) ) /\ ( F ` x ) = y ) -> x e. A ) |
| 27 |
26
|
fvresd |
|- ( ( ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) /\ x e. ( dom F i^i ( k [,) +oo ) ) ) /\ ( F ` x ) = y ) -> ( ( F |` A ) ` x ) = ( F ` x ) ) |
| 28 |
|
simpr |
|- ( ( ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) /\ x e. ( dom F i^i ( k [,) +oo ) ) ) /\ ( F ` x ) = y ) -> ( F ` x ) = y ) |
| 29 |
27 28
|
eqtr2d |
|- ( ( ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) /\ x e. ( dom F i^i ( k [,) +oo ) ) ) /\ ( F ` x ) = y ) -> y = ( ( F |` A ) ` x ) ) |
| 30 |
|
simplll |
|- ( ( ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) /\ x e. ( dom F i^i ( k [,) +oo ) ) ) /\ ( F ` x ) = y ) -> ph ) |
| 31 |
2
|
funresd |
|- ( ph -> Fun ( F |` A ) ) |
| 32 |
30 31
|
syl |
|- ( ( ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) /\ x e. ( dom F i^i ( k [,) +oo ) ) ) /\ ( F ` x ) = y ) -> Fun ( F |` A ) ) |
| 33 |
11
|
ad2antlr |
|- ( ( ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) /\ x e. ( dom F i^i ( k [,) +oo ) ) ) /\ ( F ` x ) = y ) -> x e. dom F ) |
| 34 |
26 33
|
elind |
|- ( ( ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) /\ x e. ( dom F i^i ( k [,) +oo ) ) ) /\ ( F ` x ) = y ) -> x e. ( A i^i dom F ) ) |
| 35 |
|
dmres |
|- dom ( F |` A ) = ( A i^i dom F ) |
| 36 |
34 35
|
eleqtrrdi |
|- ( ( ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) /\ x e. ( dom F i^i ( k [,) +oo ) ) ) /\ ( F ` x ) = y ) -> x e. dom ( F |` A ) ) |
| 37 |
32 36
|
jca |
|- ( ( ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) /\ x e. ( dom F i^i ( k [,) +oo ) ) ) /\ ( F ` x ) = y ) -> ( Fun ( F |` A ) /\ x e. dom ( F |` A ) ) ) |
| 38 |
|
elinel2 |
|- ( x e. ( dom F i^i ( k [,) +oo ) ) -> x e. ( k [,) +oo ) ) |
| 39 |
38
|
ad2antlr |
|- ( ( ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) /\ x e. ( dom F i^i ( k [,) +oo ) ) ) /\ ( F ` x ) = y ) -> x e. ( k [,) +oo ) ) |
| 40 |
|
funfvima |
|- ( ( Fun ( F |` A ) /\ x e. dom ( F |` A ) ) -> ( x e. ( k [,) +oo ) -> ( ( F |` A ) ` x ) e. ( ( F |` A ) " ( k [,) +oo ) ) ) ) |
| 41 |
37 39 40
|
sylc |
|- ( ( ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) /\ x e. ( dom F i^i ( k [,) +oo ) ) ) /\ ( F ` x ) = y ) -> ( ( F |` A ) ` x ) e. ( ( F |` A ) " ( k [,) +oo ) ) ) |
| 42 |
29 41
|
eqeltrd |
|- ( ( ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) /\ x e. ( dom F i^i ( k [,) +oo ) ) ) /\ ( F ` x ) = y ) -> y e. ( ( F |` A ) " ( k [,) +oo ) ) ) |
| 43 |
42
|
rexlimdva2 |
|- ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) -> ( E. x e. ( dom F i^i ( k [,) +oo ) ) ( F ` x ) = y -> y e. ( ( F |` A ) " ( k [,) +oo ) ) ) ) |
| 44 |
10 43
|
mpd |
|- ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) -> y e. ( ( F |` A ) " ( k [,) +oo ) ) ) |
| 45 |
44
|
ralrimiva |
|- ( ph -> A. y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) y e. ( ( F |` A ) " ( k [,) +oo ) ) ) |
| 46 |
|
dfss3 |
|- ( ( ( F " ( k [,) +oo ) ) i^i RR* ) C_ ( ( F |` A ) " ( k [,) +oo ) ) <-> A. y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) y e. ( ( F |` A ) " ( k [,) +oo ) ) ) |
| 47 |
45 46
|
sylibr |
|- ( ph -> ( ( F " ( k [,) +oo ) ) i^i RR* ) C_ ( ( F |` A ) " ( k [,) +oo ) ) ) |
| 48 |
|
inss2 |
|- ( ( F " ( k [,) +oo ) ) i^i RR* ) C_ RR* |
| 49 |
48
|
a1i |
|- ( ph -> ( ( F " ( k [,) +oo ) ) i^i RR* ) C_ RR* ) |
| 50 |
47 49
|
ssind |
|- ( ph -> ( ( F " ( k [,) +oo ) ) i^i RR* ) C_ ( ( ( F |` A ) " ( k [,) +oo ) ) i^i RR* ) ) |
| 51 |
6 50
|
eqssd |
|- ( ph -> ( ( ( F |` A ) " ( k [,) +oo ) ) i^i RR* ) = ( ( F " ( k [,) +oo ) ) i^i RR* ) ) |
| 52 |
51
|
supeq1d |
|- ( ph -> sup ( ( ( ( F |` A ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) = sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 53 |
52
|
mpteq2dv |
|- ( ph -> ( k e. RR |-> sup ( ( ( ( F |` A ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) ) |
| 54 |
53
|
rneqd |
|- ( ph -> ran ( k e. RR |-> sup ( ( ( ( F |` A ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ran ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) ) |
| 55 |
54
|
infeq1d |
|- ( ph -> inf ( ran ( k e. RR |-> sup ( ( ( ( F |` A ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) = inf ( ran ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
| 56 |
1
|
resexd |
|- ( ph -> ( F |` A ) e. _V ) |
| 57 |
|
eqid |
|- ( k e. RR |-> sup ( ( ( ( F |` A ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( k e. RR |-> sup ( ( ( ( F |` A ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 58 |
57
|
limsupval |
|- ( ( F |` A ) e. _V -> ( limsup ` ( F |` A ) ) = inf ( ran ( k e. RR |-> sup ( ( ( ( F |` A ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
| 59 |
56 58
|
syl |
|- ( ph -> ( limsup ` ( F |` A ) ) = inf ( ran ( k e. RR |-> sup ( ( ( ( F |` A ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
| 60 |
|
eqid |
|- ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 61 |
60
|
limsupval |
|- ( F e. V -> ( limsup ` F ) = inf ( ran ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
| 62 |
1 61
|
syl |
|- ( ph -> ( limsup ` F ) = inf ( ran ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
| 63 |
55 59 62
|
3eqtr4d |
|- ( ph -> ( limsup ` ( F |` A ) ) = ( limsup ` F ) ) |