| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elimag |
|- ( B e. ( F " C ) -> ( B e. ( F " C ) <-> E. x e. C x F B ) ) |
| 2 |
1
|
ibi |
|- ( B e. ( F " C ) -> E. x e. C x F B ) |
| 3 |
|
df-rex |
|- ( E. x e. C x F B <-> E. x ( x e. C /\ x F B ) ) |
| 4 |
2 3
|
sylib |
|- ( B e. ( F " C ) -> E. x ( x e. C /\ x F B ) ) |
| 5 |
|
fnbr |
|- ( ( F Fn A /\ x F B ) -> x e. A ) |
| 6 |
5
|
adantrl |
|- ( ( F Fn A /\ ( x e. C /\ x F B ) ) -> x e. A ) |
| 7 |
|
simprl |
|- ( ( F Fn A /\ ( x e. C /\ x F B ) ) -> x e. C ) |
| 8 |
6 7
|
elind |
|- ( ( F Fn A /\ ( x e. C /\ x F B ) ) -> x e. ( A i^i C ) ) |
| 9 |
|
fnfun |
|- ( F Fn A -> Fun F ) |
| 10 |
|
funbrfv |
|- ( Fun F -> ( x F B -> ( F ` x ) = B ) ) |
| 11 |
10
|
imp |
|- ( ( Fun F /\ x F B ) -> ( F ` x ) = B ) |
| 12 |
9 11
|
sylan |
|- ( ( F Fn A /\ x F B ) -> ( F ` x ) = B ) |
| 13 |
12
|
adantrl |
|- ( ( F Fn A /\ ( x e. C /\ x F B ) ) -> ( F ` x ) = B ) |
| 14 |
8 13
|
jca |
|- ( ( F Fn A /\ ( x e. C /\ x F B ) ) -> ( x e. ( A i^i C ) /\ ( F ` x ) = B ) ) |
| 15 |
14
|
ex |
|- ( F Fn A -> ( ( x e. C /\ x F B ) -> ( x e. ( A i^i C ) /\ ( F ` x ) = B ) ) ) |
| 16 |
15
|
eximdv |
|- ( F Fn A -> ( E. x ( x e. C /\ x F B ) -> E. x ( x e. ( A i^i C ) /\ ( F ` x ) = B ) ) ) |
| 17 |
16
|
imp |
|- ( ( F Fn A /\ E. x ( x e. C /\ x F B ) ) -> E. x ( x e. ( A i^i C ) /\ ( F ` x ) = B ) ) |
| 18 |
|
df-rex |
|- ( E. x e. ( A i^i C ) ( F ` x ) = B <-> E. x ( x e. ( A i^i C ) /\ ( F ` x ) = B ) ) |
| 19 |
17 18
|
sylibr |
|- ( ( F Fn A /\ E. x ( x e. C /\ x F B ) ) -> E. x e. ( A i^i C ) ( F ` x ) = B ) |
| 20 |
4 19
|
sylan2 |
|- ( ( F Fn A /\ B e. ( F " C ) ) -> E. x e. ( A i^i C ) ( F ` x ) = B ) |