Metamath Proof Explorer


Theorem fvelima2

Description: Function value in an image. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Assertion fvelima2 ( ( 𝐹 Fn 𝐴𝐵 ∈ ( 𝐹𝐶 ) ) → ∃ 𝑥 ∈ ( 𝐴𝐶 ) ( 𝐹𝑥 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 elimag ( 𝐵 ∈ ( 𝐹𝐶 ) → ( 𝐵 ∈ ( 𝐹𝐶 ) ↔ ∃ 𝑥𝐶 𝑥 𝐹 𝐵 ) )
2 1 ibi ( 𝐵 ∈ ( 𝐹𝐶 ) → ∃ 𝑥𝐶 𝑥 𝐹 𝐵 )
3 df-rex ( ∃ 𝑥𝐶 𝑥 𝐹 𝐵 ↔ ∃ 𝑥 ( 𝑥𝐶𝑥 𝐹 𝐵 ) )
4 2 3 sylib ( 𝐵 ∈ ( 𝐹𝐶 ) → ∃ 𝑥 ( 𝑥𝐶𝑥 𝐹 𝐵 ) )
5 fnbr ( ( 𝐹 Fn 𝐴𝑥 𝐹 𝐵 ) → 𝑥𝐴 )
6 5 adantrl ( ( 𝐹 Fn 𝐴 ∧ ( 𝑥𝐶𝑥 𝐹 𝐵 ) ) → 𝑥𝐴 )
7 simprl ( ( 𝐹 Fn 𝐴 ∧ ( 𝑥𝐶𝑥 𝐹 𝐵 ) ) → 𝑥𝐶 )
8 6 7 elind ( ( 𝐹 Fn 𝐴 ∧ ( 𝑥𝐶𝑥 𝐹 𝐵 ) ) → 𝑥 ∈ ( 𝐴𝐶 ) )
9 fnfun ( 𝐹 Fn 𝐴 → Fun 𝐹 )
10 funbrfv ( Fun 𝐹 → ( 𝑥 𝐹 𝐵 → ( 𝐹𝑥 ) = 𝐵 ) )
11 10 imp ( ( Fun 𝐹𝑥 𝐹 𝐵 ) → ( 𝐹𝑥 ) = 𝐵 )
12 9 11 sylan ( ( 𝐹 Fn 𝐴𝑥 𝐹 𝐵 ) → ( 𝐹𝑥 ) = 𝐵 )
13 12 adantrl ( ( 𝐹 Fn 𝐴 ∧ ( 𝑥𝐶𝑥 𝐹 𝐵 ) ) → ( 𝐹𝑥 ) = 𝐵 )
14 8 13 jca ( ( 𝐹 Fn 𝐴 ∧ ( 𝑥𝐶𝑥 𝐹 𝐵 ) ) → ( 𝑥 ∈ ( 𝐴𝐶 ) ∧ ( 𝐹𝑥 ) = 𝐵 ) )
15 14 ex ( 𝐹 Fn 𝐴 → ( ( 𝑥𝐶𝑥 𝐹 𝐵 ) → ( 𝑥 ∈ ( 𝐴𝐶 ) ∧ ( 𝐹𝑥 ) = 𝐵 ) ) )
16 15 eximdv ( 𝐹 Fn 𝐴 → ( ∃ 𝑥 ( 𝑥𝐶𝑥 𝐹 𝐵 ) → ∃ 𝑥 ( 𝑥 ∈ ( 𝐴𝐶 ) ∧ ( 𝐹𝑥 ) = 𝐵 ) ) )
17 16 imp ( ( 𝐹 Fn 𝐴 ∧ ∃ 𝑥 ( 𝑥𝐶𝑥 𝐹 𝐵 ) ) → ∃ 𝑥 ( 𝑥 ∈ ( 𝐴𝐶 ) ∧ ( 𝐹𝑥 ) = 𝐵 ) )
18 df-rex ( ∃ 𝑥 ∈ ( 𝐴𝐶 ) ( 𝐹𝑥 ) = 𝐵 ↔ ∃ 𝑥 ( 𝑥 ∈ ( 𝐴𝐶 ) ∧ ( 𝐹𝑥 ) = 𝐵 ) )
19 17 18 sylibr ( ( 𝐹 Fn 𝐴 ∧ ∃ 𝑥 ( 𝑥𝐶𝑥 𝐹 𝐵 ) ) → ∃ 𝑥 ∈ ( 𝐴𝐶 ) ( 𝐹𝑥 ) = 𝐵 )
20 4 19 sylan2 ( ( 𝐹 Fn 𝐴𝐵 ∈ ( 𝐹𝐶 ) ) → ∃ 𝑥 ∈ ( 𝐴𝐶 ) ( 𝐹𝑥 ) = 𝐵 )