Step |
Hyp |
Ref |
Expression |
1 |
|
limsupresxr.1 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
2 |
|
limsupresxr.2 |
⊢ ( 𝜑 → Fun 𝐹 ) |
3 |
|
limsupresxr.3 |
⊢ 𝐴 = ( ◡ 𝐹 “ ℝ* ) |
4 |
|
resimass |
⊢ ( ( 𝐹 ↾ 𝐴 ) “ ( 𝑘 [,) +∞ ) ) ⊆ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) |
5 |
4
|
a1i |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐴 ) “ ( 𝑘 [,) +∞ ) ) ⊆ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) |
6 |
5
|
ssrind |
⊢ ( 𝜑 → ( ( ( 𝐹 ↾ 𝐴 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) |
7 |
2
|
funfnd |
⊢ ( 𝜑 → 𝐹 Fn dom 𝐹 ) |
8 |
|
elinel1 |
⊢ ( 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) → 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) |
9 |
|
fvelima2 |
⊢ ( ( 𝐹 Fn dom 𝐹 ∧ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) → ∃ 𝑥 ∈ ( dom 𝐹 ∩ ( 𝑘 [,) +∞ ) ) ( 𝐹 ‘ 𝑥 ) = 𝑦 ) |
10 |
7 8 9
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) → ∃ 𝑥 ∈ ( dom 𝐹 ∩ ( 𝑘 [,) +∞ ) ) ( 𝐹 ‘ 𝑥 ) = 𝑦 ) |
11 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( dom 𝐹 ∩ ( 𝑘 [,) +∞ ) ) → 𝑥 ∈ dom 𝐹 ) |
12 |
11
|
3ad2ant2 |
⊢ ( ( 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ∧ 𝑥 ∈ ( dom 𝐹 ∩ ( 𝑘 [,) +∞ ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → 𝑥 ∈ dom 𝐹 ) |
13 |
|
simpr |
⊢ ( ( 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → ( 𝐹 ‘ 𝑥 ) = 𝑦 ) |
14 |
|
elinel2 |
⊢ ( 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) → 𝑦 ∈ ℝ* ) |
15 |
14
|
adantr |
⊢ ( ( 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → 𝑦 ∈ ℝ* ) |
16 |
13 15
|
eqeltrd |
⊢ ( ( 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ) |
17 |
16
|
3adant2 |
⊢ ( ( 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ∧ 𝑥 ∈ ( dom 𝐹 ∩ ( 𝑘 [,) +∞ ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ) |
18 |
12 17
|
jca |
⊢ ( ( 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ∧ 𝑥 ∈ ( dom 𝐹 ∩ ( 𝑘 [,) +∞ ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ) ) |
19 |
18
|
3adant1l |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) ∧ 𝑥 ∈ ( dom 𝐹 ∩ ( 𝑘 [,) +∞ ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ) ) |
20 |
|
simp1l |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) ∧ 𝑥 ∈ ( dom 𝐹 ∩ ( 𝑘 [,) +∞ ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → 𝜑 ) |
21 |
|
elpreima |
⊢ ( 𝐹 Fn dom 𝐹 → ( 𝑥 ∈ ( ◡ 𝐹 “ ℝ* ) ↔ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ) ) ) |
22 |
7 21
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ◡ 𝐹 “ ℝ* ) ↔ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ) ) ) |
23 |
20 22
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) ∧ 𝑥 ∈ ( dom 𝐹 ∩ ( 𝑘 [,) +∞ ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → ( 𝑥 ∈ ( ◡ 𝐹 “ ℝ* ) ↔ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ) ) ) |
24 |
19 23
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) ∧ 𝑥 ∈ ( dom 𝐹 ∩ ( 𝑘 [,) +∞ ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → 𝑥 ∈ ( ◡ 𝐹 “ ℝ* ) ) |
25 |
24 3
|
eleqtrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) ∧ 𝑥 ∈ ( dom 𝐹 ∩ ( 𝑘 [,) +∞ ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → 𝑥 ∈ 𝐴 ) |
26 |
25
|
3expa |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) ∧ 𝑥 ∈ ( dom 𝐹 ∩ ( 𝑘 [,) +∞ ) ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → 𝑥 ∈ 𝐴 ) |
27 |
26
|
fvresd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) ∧ 𝑥 ∈ ( dom 𝐹 ∩ ( 𝑘 [,) +∞ ) ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
28 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) ∧ 𝑥 ∈ ( dom 𝐹 ∩ ( 𝑘 [,) +∞ ) ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → ( 𝐹 ‘ 𝑥 ) = 𝑦 ) |
29 |
27 28
|
eqtr2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) ∧ 𝑥 ∈ ( dom 𝐹 ∩ ( 𝑘 [,) +∞ ) ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → 𝑦 = ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) ) |
30 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) ∧ 𝑥 ∈ ( dom 𝐹 ∩ ( 𝑘 [,) +∞ ) ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → 𝜑 ) |
31 |
2
|
funresd |
⊢ ( 𝜑 → Fun ( 𝐹 ↾ 𝐴 ) ) |
32 |
30 31
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) ∧ 𝑥 ∈ ( dom 𝐹 ∩ ( 𝑘 [,) +∞ ) ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → Fun ( 𝐹 ↾ 𝐴 ) ) |
33 |
11
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) ∧ 𝑥 ∈ ( dom 𝐹 ∩ ( 𝑘 [,) +∞ ) ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → 𝑥 ∈ dom 𝐹 ) |
34 |
26 33
|
elind |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) ∧ 𝑥 ∈ ( dom 𝐹 ∩ ( 𝑘 [,) +∞ ) ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → 𝑥 ∈ ( 𝐴 ∩ dom 𝐹 ) ) |
35 |
|
dmres |
⊢ dom ( 𝐹 ↾ 𝐴 ) = ( 𝐴 ∩ dom 𝐹 ) |
36 |
34 35
|
eleqtrrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) ∧ 𝑥 ∈ ( dom 𝐹 ∩ ( 𝑘 [,) +∞ ) ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → 𝑥 ∈ dom ( 𝐹 ↾ 𝐴 ) ) |
37 |
32 36
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) ∧ 𝑥 ∈ ( dom 𝐹 ∩ ( 𝑘 [,) +∞ ) ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → ( Fun ( 𝐹 ↾ 𝐴 ) ∧ 𝑥 ∈ dom ( 𝐹 ↾ 𝐴 ) ) ) |
38 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( dom 𝐹 ∩ ( 𝑘 [,) +∞ ) ) → 𝑥 ∈ ( 𝑘 [,) +∞ ) ) |
39 |
38
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) ∧ 𝑥 ∈ ( dom 𝐹 ∩ ( 𝑘 [,) +∞ ) ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → 𝑥 ∈ ( 𝑘 [,) +∞ ) ) |
40 |
|
funfvima |
⊢ ( ( Fun ( 𝐹 ↾ 𝐴 ) ∧ 𝑥 ∈ dom ( 𝐹 ↾ 𝐴 ) ) → ( 𝑥 ∈ ( 𝑘 [,) +∞ ) → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) ∈ ( ( 𝐹 ↾ 𝐴 ) “ ( 𝑘 [,) +∞ ) ) ) ) |
41 |
37 39 40
|
sylc |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) ∧ 𝑥 ∈ ( dom 𝐹 ∩ ( 𝑘 [,) +∞ ) ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) ∈ ( ( 𝐹 ↾ 𝐴 ) “ ( 𝑘 [,) +∞ ) ) ) |
42 |
29 41
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) ∧ 𝑥 ∈ ( dom 𝐹 ∩ ( 𝑘 [,) +∞ ) ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → 𝑦 ∈ ( ( 𝐹 ↾ 𝐴 ) “ ( 𝑘 [,) +∞ ) ) ) |
43 |
42
|
rexlimdva2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) → ( ∃ 𝑥 ∈ ( dom 𝐹 ∩ ( 𝑘 [,) +∞ ) ) ( 𝐹 ‘ 𝑥 ) = 𝑦 → 𝑦 ∈ ( ( 𝐹 ↾ 𝐴 ) “ ( 𝑘 [,) +∞ ) ) ) ) |
44 |
10 43
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) → 𝑦 ∈ ( ( 𝐹 ↾ 𝐴 ) “ ( 𝑘 [,) +∞ ) ) ) |
45 |
44
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) 𝑦 ∈ ( ( 𝐹 ↾ 𝐴 ) “ ( 𝑘 [,) +∞ ) ) ) |
46 |
|
dfss3 |
⊢ ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ( ( 𝐹 ↾ 𝐴 ) “ ( 𝑘 [,) +∞ ) ) ↔ ∀ 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) 𝑦 ∈ ( ( 𝐹 ↾ 𝐴 ) “ ( 𝑘 [,) +∞ ) ) ) |
47 |
45 46
|
sylibr |
⊢ ( 𝜑 → ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ( ( 𝐹 ↾ 𝐴 ) “ ( 𝑘 [,) +∞ ) ) ) |
48 |
|
inss2 |
⊢ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* |
49 |
48
|
a1i |
⊢ ( 𝜑 → ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* ) |
50 |
47 49
|
ssind |
⊢ ( 𝜑 → ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ( ( ( 𝐹 ↾ 𝐴 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) |
51 |
6 50
|
eqssd |
⊢ ( 𝜑 → ( ( ( 𝐹 ↾ 𝐴 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) = ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) |
52 |
51
|
supeq1d |
⊢ ( 𝜑 → sup ( ( ( ( 𝐹 ↾ 𝐴 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) = sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
53 |
52
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝐹 ↾ 𝐴 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ) |
54 |
53
|
rneqd |
⊢ ( 𝜑 → ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝐹 ↾ 𝐴 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ) |
55 |
54
|
infeq1d |
⊢ ( 𝜑 → inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝐹 ↾ 𝐴 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) = inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |
56 |
1
|
resexd |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) ∈ V ) |
57 |
|
eqid |
⊢ ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝐹 ↾ 𝐴 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝐹 ↾ 𝐴 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
58 |
57
|
limsupval |
⊢ ( ( 𝐹 ↾ 𝐴 ) ∈ V → ( lim sup ‘ ( 𝐹 ↾ 𝐴 ) ) = inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝐹 ↾ 𝐴 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |
59 |
56 58
|
syl |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝐹 ↾ 𝐴 ) ) = inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝐹 ↾ 𝐴 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |
60 |
|
eqid |
⊢ ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
61 |
60
|
limsupval |
⊢ ( 𝐹 ∈ 𝑉 → ( lim sup ‘ 𝐹 ) = inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |
62 |
1 61
|
syl |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) = inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |
63 |
55 59 62
|
3eqtr4d |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝐹 ↾ 𝐴 ) ) = ( lim sup ‘ 𝐹 ) ) |