Step |
Hyp |
Ref |
Expression |
1 |
|
liminfresxr.1 |
|- ( ph -> F e. V ) |
2 |
|
liminfresxr.2 |
|- ( ph -> Fun F ) |
3 |
|
liminfresxr.3 |
|- A = ( `' F " RR* ) |
4 |
|
resimass |
|- ( ( F |` A ) " ( k [,) +oo ) ) C_ ( F " ( k [,) +oo ) ) |
5 |
4
|
a1i |
|- ( ph -> ( ( F |` A ) " ( k [,) +oo ) ) C_ ( F " ( k [,) +oo ) ) ) |
6 |
5
|
ssrind |
|- ( ph -> ( ( ( F |` A ) " ( k [,) +oo ) ) i^i RR* ) C_ ( ( F " ( k [,) +oo ) ) i^i RR* ) ) |
7 |
2
|
funfnd |
|- ( ph -> F Fn dom F ) |
8 |
|
elinel1 |
|- ( y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) -> y e. ( F " ( k [,) +oo ) ) ) |
9 |
|
fvelima2 |
|- ( ( F Fn dom F /\ y e. ( F " ( k [,) +oo ) ) ) -> E. x e. ( dom F i^i ( k [,) +oo ) ) ( F ` x ) = y ) |
10 |
7 8 9
|
syl2an |
|- ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) -> E. x e. ( dom F i^i ( k [,) +oo ) ) ( F ` x ) = y ) |
11 |
|
elinel1 |
|- ( x e. ( dom F i^i ( k [,) +oo ) ) -> x e. dom F ) |
12 |
11
|
3ad2ant2 |
|- ( ( y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) /\ x e. ( dom F i^i ( k [,) +oo ) ) /\ ( F ` x ) = y ) -> x e. dom F ) |
13 |
|
simpr |
|- ( ( y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) /\ ( F ` x ) = y ) -> ( F ` x ) = y ) |
14 |
|
elinel2 |
|- ( y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) -> y e. RR* ) |
15 |
14
|
adantr |
|- ( ( y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) /\ ( F ` x ) = y ) -> y e. RR* ) |
16 |
13 15
|
eqeltrd |
|- ( ( y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) /\ ( F ` x ) = y ) -> ( F ` x ) e. RR* ) |
17 |
16
|
3adant2 |
|- ( ( y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) /\ x e. ( dom F i^i ( k [,) +oo ) ) /\ ( F ` x ) = y ) -> ( F ` x ) e. RR* ) |
18 |
12 17
|
jca |
|- ( ( y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) /\ x e. ( dom F i^i ( k [,) +oo ) ) /\ ( F ` x ) = y ) -> ( x e. dom F /\ ( F ` x ) e. RR* ) ) |
19 |
18
|
3adant1l |
|- ( ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) /\ x e. ( dom F i^i ( k [,) +oo ) ) /\ ( F ` x ) = y ) -> ( x e. dom F /\ ( F ` x ) e. RR* ) ) |
20 |
|
simp1l |
|- ( ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) /\ x e. ( dom F i^i ( k [,) +oo ) ) /\ ( F ` x ) = y ) -> ph ) |
21 |
|
elpreima |
|- ( F Fn dom F -> ( x e. ( `' F " RR* ) <-> ( x e. dom F /\ ( F ` x ) e. RR* ) ) ) |
22 |
7 21
|
syl |
|- ( ph -> ( x e. ( `' F " RR* ) <-> ( x e. dom F /\ ( F ` x ) e. RR* ) ) ) |
23 |
20 22
|
syl |
|- ( ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) /\ x e. ( dom F i^i ( k [,) +oo ) ) /\ ( F ` x ) = y ) -> ( x e. ( `' F " RR* ) <-> ( x e. dom F /\ ( F ` x ) e. RR* ) ) ) |
24 |
19 23
|
mpbird |
|- ( ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) /\ x e. ( dom F i^i ( k [,) +oo ) ) /\ ( F ` x ) = y ) -> x e. ( `' F " RR* ) ) |
25 |
24 3
|
eleqtrrdi |
|- ( ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) /\ x e. ( dom F i^i ( k [,) +oo ) ) /\ ( F ` x ) = y ) -> x e. A ) |
26 |
25
|
3expa |
|- ( ( ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) /\ x e. ( dom F i^i ( k [,) +oo ) ) ) /\ ( F ` x ) = y ) -> x e. A ) |
27 |
26
|
fvresd |
|- ( ( ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) /\ x e. ( dom F i^i ( k [,) +oo ) ) ) /\ ( F ` x ) = y ) -> ( ( F |` A ) ` x ) = ( F ` x ) ) |
28 |
|
simpr |
|- ( ( ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) /\ x e. ( dom F i^i ( k [,) +oo ) ) ) /\ ( F ` x ) = y ) -> ( F ` x ) = y ) |
29 |
27 28
|
eqtr2d |
|- ( ( ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) /\ x e. ( dom F i^i ( k [,) +oo ) ) ) /\ ( F ` x ) = y ) -> y = ( ( F |` A ) ` x ) ) |
30 |
|
simplll |
|- ( ( ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) /\ x e. ( dom F i^i ( k [,) +oo ) ) ) /\ ( F ` x ) = y ) -> ph ) |
31 |
2
|
funresd |
|- ( ph -> Fun ( F |` A ) ) |
32 |
30 31
|
syl |
|- ( ( ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) /\ x e. ( dom F i^i ( k [,) +oo ) ) ) /\ ( F ` x ) = y ) -> Fun ( F |` A ) ) |
33 |
11
|
ad2antlr |
|- ( ( ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) /\ x e. ( dom F i^i ( k [,) +oo ) ) ) /\ ( F ` x ) = y ) -> x e. dom F ) |
34 |
26 33
|
elind |
|- ( ( ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) /\ x e. ( dom F i^i ( k [,) +oo ) ) ) /\ ( F ` x ) = y ) -> x e. ( A i^i dom F ) ) |
35 |
|
dmres |
|- dom ( F |` A ) = ( A i^i dom F ) |
36 |
34 35
|
eleqtrrdi |
|- ( ( ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) /\ x e. ( dom F i^i ( k [,) +oo ) ) ) /\ ( F ` x ) = y ) -> x e. dom ( F |` A ) ) |
37 |
32 36
|
jca |
|- ( ( ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) /\ x e. ( dom F i^i ( k [,) +oo ) ) ) /\ ( F ` x ) = y ) -> ( Fun ( F |` A ) /\ x e. dom ( F |` A ) ) ) |
38 |
|
elinel2 |
|- ( x e. ( dom F i^i ( k [,) +oo ) ) -> x e. ( k [,) +oo ) ) |
39 |
38
|
ad2antlr |
|- ( ( ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) /\ x e. ( dom F i^i ( k [,) +oo ) ) ) /\ ( F ` x ) = y ) -> x e. ( k [,) +oo ) ) |
40 |
|
funfvima |
|- ( ( Fun ( F |` A ) /\ x e. dom ( F |` A ) ) -> ( x e. ( k [,) +oo ) -> ( ( F |` A ) ` x ) e. ( ( F |` A ) " ( k [,) +oo ) ) ) ) |
41 |
37 39 40
|
sylc |
|- ( ( ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) /\ x e. ( dom F i^i ( k [,) +oo ) ) ) /\ ( F ` x ) = y ) -> ( ( F |` A ) ` x ) e. ( ( F |` A ) " ( k [,) +oo ) ) ) |
42 |
29 41
|
eqeltrd |
|- ( ( ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) /\ x e. ( dom F i^i ( k [,) +oo ) ) ) /\ ( F ` x ) = y ) -> y e. ( ( F |` A ) " ( k [,) +oo ) ) ) |
43 |
42
|
rexlimdva2 |
|- ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) -> ( E. x e. ( dom F i^i ( k [,) +oo ) ) ( F ` x ) = y -> y e. ( ( F |` A ) " ( k [,) +oo ) ) ) ) |
44 |
10 43
|
mpd |
|- ( ( ph /\ y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) -> y e. ( ( F |` A ) " ( k [,) +oo ) ) ) |
45 |
44
|
ralrimiva |
|- ( ph -> A. y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) y e. ( ( F |` A ) " ( k [,) +oo ) ) ) |
46 |
|
dfss3 |
|- ( ( ( F " ( k [,) +oo ) ) i^i RR* ) C_ ( ( F |` A ) " ( k [,) +oo ) ) <-> A. y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) y e. ( ( F |` A ) " ( k [,) +oo ) ) ) |
47 |
45 46
|
sylibr |
|- ( ph -> ( ( F " ( k [,) +oo ) ) i^i RR* ) C_ ( ( F |` A ) " ( k [,) +oo ) ) ) |
48 |
|
inss2 |
|- ( ( F " ( k [,) +oo ) ) i^i RR* ) C_ RR* |
49 |
48
|
a1i |
|- ( ph -> ( ( F " ( k [,) +oo ) ) i^i RR* ) C_ RR* ) |
50 |
47 49
|
ssind |
|- ( ph -> ( ( F " ( k [,) +oo ) ) i^i RR* ) C_ ( ( ( F |` A ) " ( k [,) +oo ) ) i^i RR* ) ) |
51 |
6 50
|
eqssd |
|- ( ph -> ( ( ( F |` A ) " ( k [,) +oo ) ) i^i RR* ) = ( ( F " ( k [,) +oo ) ) i^i RR* ) ) |
52 |
51
|
infeq1d |
|- ( ph -> inf ( ( ( ( F |` A ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) = inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
53 |
52
|
mpteq2dv |
|- ( ph -> ( k e. RR |-> inf ( ( ( ( F |` A ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) ) |
54 |
53
|
rneqd |
|- ( ph -> ran ( k e. RR |-> inf ( ( ( ( F |` A ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ran ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) ) |
55 |
54
|
supeq1d |
|- ( ph -> sup ( ran ( k e. RR |-> inf ( ( ( ( F |` A ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) = sup ( ran ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
56 |
1
|
resexd |
|- ( ph -> ( F |` A ) e. _V ) |
57 |
|
eqid |
|- ( k e. RR |-> inf ( ( ( ( F |` A ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( k e. RR |-> inf ( ( ( ( F |` A ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
58 |
57
|
liminfval |
|- ( ( F |` A ) e. _V -> ( liminf ` ( F |` A ) ) = sup ( ran ( k e. RR |-> inf ( ( ( ( F |` A ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
59 |
56 58
|
syl |
|- ( ph -> ( liminf ` ( F |` A ) ) = sup ( ran ( k e. RR |-> inf ( ( ( ( F |` A ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
60 |
|
eqid |
|- ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
61 |
60
|
liminfval |
|- ( F e. V -> ( liminf ` F ) = sup ( ran ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
62 |
1 61
|
syl |
|- ( ph -> ( liminf ` F ) = sup ( ran ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
63 |
55 59 62
|
3eqtr4d |
|- ( ph -> ( liminf ` ( F |` A ) ) = ( liminf ` F ) ) |