Step |
Hyp |
Ref |
Expression |
1 |
|
liminfval2.1 |
|- G = ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
2 |
|
liminfval2.2 |
|- ( ph -> F e. V ) |
3 |
|
liminfval2.3 |
|- ( ph -> A C_ RR ) |
4 |
|
liminfval2.4 |
|- ( ph -> sup ( A , RR* , < ) = +oo ) |
5 |
|
oveq1 |
|- ( k = j -> ( k [,) +oo ) = ( j [,) +oo ) ) |
6 |
5
|
imaeq2d |
|- ( k = j -> ( F " ( k [,) +oo ) ) = ( F " ( j [,) +oo ) ) ) |
7 |
6
|
ineq1d |
|- ( k = j -> ( ( F " ( k [,) +oo ) ) i^i RR* ) = ( ( F " ( j [,) +oo ) ) i^i RR* ) ) |
8 |
7
|
infeq1d |
|- ( k = j -> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) = inf ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
9 |
8
|
cbvmptv |
|- ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( j e. RR |-> inf ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
10 |
1 9
|
eqtri |
|- G = ( j e. RR |-> inf ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
11 |
10
|
liminfval |
|- ( F e. V -> ( liminf ` F ) = sup ( ran G , RR* , < ) ) |
12 |
2 11
|
syl |
|- ( ph -> ( liminf ` F ) = sup ( ran G , RR* , < ) ) |
13 |
3
|
ssrexr |
|- ( ph -> A C_ RR* ) |
14 |
|
supxrunb1 |
|- ( A C_ RR* -> ( A. n e. RR E. x e. A n <_ x <-> sup ( A , RR* , < ) = +oo ) ) |
15 |
13 14
|
syl |
|- ( ph -> ( A. n e. RR E. x e. A n <_ x <-> sup ( A , RR* , < ) = +oo ) ) |
16 |
4 15
|
mpbird |
|- ( ph -> A. n e. RR E. x e. A n <_ x ) |
17 |
10
|
liminfgf |
|- G : RR --> RR* |
18 |
17
|
ffvelrni |
|- ( n e. RR -> ( G ` n ) e. RR* ) |
19 |
18
|
ad2antlr |
|- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> ( G ` n ) e. RR* ) |
20 |
|
simpll |
|- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> ph ) |
21 |
|
simprl |
|- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> x e. A ) |
22 |
3
|
sselda |
|- ( ( ph /\ x e. A ) -> x e. RR ) |
23 |
17
|
ffvelrni |
|- ( x e. RR -> ( G ` x ) e. RR* ) |
24 |
22 23
|
syl |
|- ( ( ph /\ x e. A ) -> ( G ` x ) e. RR* ) |
25 |
20 21 24
|
syl2anc |
|- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> ( G ` x ) e. RR* ) |
26 |
|
imassrn |
|- ( G " A ) C_ ran G |
27 |
|
frn |
|- ( G : RR --> RR* -> ran G C_ RR* ) |
28 |
17 27
|
ax-mp |
|- ran G C_ RR* |
29 |
26 28
|
sstri |
|- ( G " A ) C_ RR* |
30 |
|
supxrcl |
|- ( ( G " A ) C_ RR* -> sup ( ( G " A ) , RR* , < ) e. RR* ) |
31 |
29 30
|
ax-mp |
|- sup ( ( G " A ) , RR* , < ) e. RR* |
32 |
31
|
a1i |
|- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> sup ( ( G " A ) , RR* , < ) e. RR* ) |
33 |
|
simplr |
|- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> n e. RR ) |
34 |
20 21 22
|
syl2anc |
|- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> x e. RR ) |
35 |
|
simprr |
|- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> n <_ x ) |
36 |
|
liminfgord |
|- ( ( n e. RR /\ x e. RR /\ n <_ x ) -> inf ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) <_ inf ( ( ( F " ( x [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
37 |
33 34 35 36
|
syl3anc |
|- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> inf ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) <_ inf ( ( ( F " ( x [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
38 |
10
|
liminfgval |
|- ( n e. RR -> ( G ` n ) = inf ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
39 |
38
|
ad2antlr |
|- ( ( ( ph /\ n e. RR ) /\ x e. A ) -> ( G ` n ) = inf ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
40 |
10
|
liminfgval |
|- ( x e. RR -> ( G ` x ) = inf ( ( ( F " ( x [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
41 |
22 40
|
syl |
|- ( ( ph /\ x e. A ) -> ( G ` x ) = inf ( ( ( F " ( x [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
42 |
41
|
adantlr |
|- ( ( ( ph /\ n e. RR ) /\ x e. A ) -> ( G ` x ) = inf ( ( ( F " ( x [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
43 |
39 42
|
breq12d |
|- ( ( ( ph /\ n e. RR ) /\ x e. A ) -> ( ( G ` n ) <_ ( G ` x ) <-> inf ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) <_ inf ( ( ( F " ( x [,) +oo ) ) i^i RR* ) , RR* , < ) ) ) |
44 |
43
|
adantrr |
|- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> ( ( G ` n ) <_ ( G ` x ) <-> inf ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) <_ inf ( ( ( F " ( x [,) +oo ) ) i^i RR* ) , RR* , < ) ) ) |
45 |
37 44
|
mpbird |
|- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> ( G ` n ) <_ ( G ` x ) ) |
46 |
29
|
a1i |
|- ( ( ph /\ x e. A ) -> ( G " A ) C_ RR* ) |
47 |
|
nfv |
|- F/ j ph |
48 |
|
inss2 |
|- ( ( F " ( j [,) +oo ) ) i^i RR* ) C_ RR* |
49 |
|
infxrcl |
|- ( ( ( F " ( j [,) +oo ) ) i^i RR* ) C_ RR* -> inf ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* ) |
50 |
48 49
|
ax-mp |
|- inf ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* |
51 |
50
|
a1i |
|- ( ( ph /\ j e. RR ) -> inf ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* ) |
52 |
47 51 10
|
fnmptd |
|- ( ph -> G Fn RR ) |
53 |
52
|
adantr |
|- ( ( ph /\ x e. A ) -> G Fn RR ) |
54 |
|
simpr |
|- ( ( ph /\ x e. A ) -> x e. A ) |
55 |
53 22 54
|
fnfvimad |
|- ( ( ph /\ x e. A ) -> ( G ` x ) e. ( G " A ) ) |
56 |
|
supxrub |
|- ( ( ( G " A ) C_ RR* /\ ( G ` x ) e. ( G " A ) ) -> ( G ` x ) <_ sup ( ( G " A ) , RR* , < ) ) |
57 |
46 55 56
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( G ` x ) <_ sup ( ( G " A ) , RR* , < ) ) |
58 |
20 21 57
|
syl2anc |
|- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> ( G ` x ) <_ sup ( ( G " A ) , RR* , < ) ) |
59 |
19 25 32 45 58
|
xrletrd |
|- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> ( G ` n ) <_ sup ( ( G " A ) , RR* , < ) ) |
60 |
59
|
rexlimdvaa |
|- ( ( ph /\ n e. RR ) -> ( E. x e. A n <_ x -> ( G ` n ) <_ sup ( ( G " A ) , RR* , < ) ) ) |
61 |
60
|
ralimdva |
|- ( ph -> ( A. n e. RR E. x e. A n <_ x -> A. n e. RR ( G ` n ) <_ sup ( ( G " A ) , RR* , < ) ) ) |
62 |
16 61
|
mpd |
|- ( ph -> A. n e. RR ( G ` n ) <_ sup ( ( G " A ) , RR* , < ) ) |
63 |
|
xrltso |
|- < Or RR* |
64 |
63
|
infex |
|- inf ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) e. _V |
65 |
64
|
rgenw |
|- A. j e. RR inf ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) e. _V |
66 |
10
|
fnmpt |
|- ( A. j e. RR inf ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) e. _V -> G Fn RR ) |
67 |
65 66
|
ax-mp |
|- G Fn RR |
68 |
|
breq1 |
|- ( x = ( G ` n ) -> ( x <_ sup ( ( G " A ) , RR* , < ) <-> ( G ` n ) <_ sup ( ( G " A ) , RR* , < ) ) ) |
69 |
68
|
ralrn |
|- ( G Fn RR -> ( A. x e. ran G x <_ sup ( ( G " A ) , RR* , < ) <-> A. n e. RR ( G ` n ) <_ sup ( ( G " A ) , RR* , < ) ) ) |
70 |
67 69
|
ax-mp |
|- ( A. x e. ran G x <_ sup ( ( G " A ) , RR* , < ) <-> A. n e. RR ( G ` n ) <_ sup ( ( G " A ) , RR* , < ) ) |
71 |
62 70
|
sylibr |
|- ( ph -> A. x e. ran G x <_ sup ( ( G " A ) , RR* , < ) ) |
72 |
|
supxrleub |
|- ( ( ran G C_ RR* /\ sup ( ( G " A ) , RR* , < ) e. RR* ) -> ( sup ( ran G , RR* , < ) <_ sup ( ( G " A ) , RR* , < ) <-> A. x e. ran G x <_ sup ( ( G " A ) , RR* , < ) ) ) |
73 |
28 31 72
|
mp2an |
|- ( sup ( ran G , RR* , < ) <_ sup ( ( G " A ) , RR* , < ) <-> A. x e. ran G x <_ sup ( ( G " A ) , RR* , < ) ) |
74 |
71 73
|
sylibr |
|- ( ph -> sup ( ran G , RR* , < ) <_ sup ( ( G " A ) , RR* , < ) ) |
75 |
26
|
a1i |
|- ( ph -> ( G " A ) C_ ran G ) |
76 |
28
|
a1i |
|- ( ph -> ran G C_ RR* ) |
77 |
|
supxrss |
|- ( ( ( G " A ) C_ ran G /\ ran G C_ RR* ) -> sup ( ( G " A ) , RR* , < ) <_ sup ( ran G , RR* , < ) ) |
78 |
75 76 77
|
syl2anc |
|- ( ph -> sup ( ( G " A ) , RR* , < ) <_ sup ( ran G , RR* , < ) ) |
79 |
|
supxrcl |
|- ( ran G C_ RR* -> sup ( ran G , RR* , < ) e. RR* ) |
80 |
28 79
|
ax-mp |
|- sup ( ran G , RR* , < ) e. RR* |
81 |
|
xrletri3 |
|- ( ( sup ( ran G , RR* , < ) e. RR* /\ sup ( ( G " A ) , RR* , < ) e. RR* ) -> ( sup ( ran G , RR* , < ) = sup ( ( G " A ) , RR* , < ) <-> ( sup ( ran G , RR* , < ) <_ sup ( ( G " A ) , RR* , < ) /\ sup ( ( G " A ) , RR* , < ) <_ sup ( ran G , RR* , < ) ) ) ) |
82 |
80 31 81
|
mp2an |
|- ( sup ( ran G , RR* , < ) = sup ( ( G " A ) , RR* , < ) <-> ( sup ( ran G , RR* , < ) <_ sup ( ( G " A ) , RR* , < ) /\ sup ( ( G " A ) , RR* , < ) <_ sup ( ran G , RR* , < ) ) ) |
83 |
74 78 82
|
sylanbrc |
|- ( ph -> sup ( ran G , RR* , < ) = sup ( ( G " A ) , RR* , < ) ) |
84 |
12 83
|
eqtrd |
|- ( ph -> ( liminf ` F ) = sup ( ( G " A ) , RR* , < ) ) |