| Step | Hyp | Ref | Expression | 
						
							| 1 |  | climlimsupcex.1 |  |-  -. M e. ZZ | 
						
							| 2 |  | climlimsupcex.2 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 3 |  | climlimsupcex.3 |  |-  F = (/) | 
						
							| 4 |  | f0 |  |-  (/) : (/) --> RR | 
						
							| 5 |  | uz0 |  |-  ( -. M e. ZZ -> ( ZZ>= ` M ) = (/) ) | 
						
							| 6 | 1 5 | ax-mp |  |-  ( ZZ>= ` M ) = (/) | 
						
							| 7 | 2 6 | eqtri |  |-  Z = (/) | 
						
							| 8 | 3 7 | feq12i |  |-  ( F : Z --> RR <-> (/) : (/) --> RR ) | 
						
							| 9 | 4 8 | mpbir |  |-  F : Z --> RR | 
						
							| 10 | 9 | a1i |  |-  ( ( (/) e. CC /\ -. -oo e. CC ) -> F : Z --> RR ) | 
						
							| 11 |  | climrel |  |-  Rel ~~> | 
						
							| 12 | 11 | a1i |  |-  ( (/) e. CC -> Rel ~~> ) | 
						
							| 13 |  | 0cnv |  |-  ( (/) e. CC -> (/) ~~> (/) ) | 
						
							| 14 | 3 13 | eqbrtrid |  |-  ( (/) e. CC -> F ~~> (/) ) | 
						
							| 15 |  | releldm |  |-  ( ( Rel ~~> /\ F ~~> (/) ) -> F e. dom ~~> ) | 
						
							| 16 | 12 14 15 | syl2anc |  |-  ( (/) e. CC -> F e. dom ~~> ) | 
						
							| 17 | 16 | adantr |  |-  ( ( (/) e. CC /\ -. -oo e. CC ) -> F e. dom ~~> ) | 
						
							| 18 | 13 | adantr |  |-  ( ( (/) e. CC /\ F ~~> ( limsup ` F ) ) -> (/) ~~> (/) ) | 
						
							| 19 | 18 | adantlr |  |-  ( ( ( (/) e. CC /\ -. -oo e. CC ) /\ F ~~> ( limsup ` F ) ) -> (/) ~~> (/) ) | 
						
							| 20 |  | simpr |  |-  ( ( F ~~> ( limsup ` F ) /\ (/) ~~> (/) ) -> (/) ~~> (/) ) | 
						
							| 21 | 3 | fveq2i |  |-  ( limsup ` F ) = ( limsup ` (/) ) | 
						
							| 22 |  | limsup0 |  |-  ( limsup ` (/) ) = -oo | 
						
							| 23 | 21 22 | eqtri |  |-  ( limsup ` F ) = -oo | 
						
							| 24 | 3 23 | breq12i |  |-  ( F ~~> ( limsup ` F ) <-> (/) ~~> -oo ) | 
						
							| 25 | 24 | biimpi |  |-  ( F ~~> ( limsup ` F ) -> (/) ~~> -oo ) | 
						
							| 26 | 25 | adantr |  |-  ( ( F ~~> ( limsup ` F ) /\ (/) ~~> (/) ) -> (/) ~~> -oo ) | 
						
							| 27 |  | climuni |  |-  ( ( (/) ~~> (/) /\ (/) ~~> -oo ) -> (/) = -oo ) | 
						
							| 28 | 20 26 27 | syl2anc |  |-  ( ( F ~~> ( limsup ` F ) /\ (/) ~~> (/) ) -> (/) = -oo ) | 
						
							| 29 | 28 | adantll |  |-  ( ( ( ( (/) e. CC /\ -. -oo e. CC ) /\ F ~~> ( limsup ` F ) ) /\ (/) ~~> (/) ) -> (/) = -oo ) | 
						
							| 30 |  | nelneq |  |-  ( ( (/) e. CC /\ -. -oo e. CC ) -> -. (/) = -oo ) | 
						
							| 31 | 30 | ad2antrr |  |-  ( ( ( ( (/) e. CC /\ -. -oo e. CC ) /\ F ~~> ( limsup ` F ) ) /\ (/) ~~> (/) ) -> -. (/) = -oo ) | 
						
							| 32 | 29 31 | pm2.65da |  |-  ( ( ( (/) e. CC /\ -. -oo e. CC ) /\ F ~~> ( limsup ` F ) ) -> -. (/) ~~> (/) ) | 
						
							| 33 | 19 32 | pm2.65da |  |-  ( ( (/) e. CC /\ -. -oo e. CC ) -> -. F ~~> ( limsup ` F ) ) | 
						
							| 34 | 10 17 33 | 3jca |  |-  ( ( (/) e. CC /\ -. -oo e. CC ) -> ( F : Z --> RR /\ F e. dom ~~> /\ -. F ~~> ( limsup ` F ) ) ) |