Step |
Hyp |
Ref |
Expression |
1 |
|
climlimsupcex.1 |
|- -. M e. ZZ |
2 |
|
climlimsupcex.2 |
|- Z = ( ZZ>= ` M ) |
3 |
|
climlimsupcex.3 |
|- F = (/) |
4 |
|
f0 |
|- (/) : (/) --> RR |
5 |
|
uz0 |
|- ( -. M e. ZZ -> ( ZZ>= ` M ) = (/) ) |
6 |
1 5
|
ax-mp |
|- ( ZZ>= ` M ) = (/) |
7 |
2 6
|
eqtri |
|- Z = (/) |
8 |
3 7
|
feq12i |
|- ( F : Z --> RR <-> (/) : (/) --> RR ) |
9 |
4 8
|
mpbir |
|- F : Z --> RR |
10 |
9
|
a1i |
|- ( ( (/) e. CC /\ -. -oo e. CC ) -> F : Z --> RR ) |
11 |
|
climrel |
|- Rel ~~> |
12 |
11
|
a1i |
|- ( (/) e. CC -> Rel ~~> ) |
13 |
|
0cnv |
|- ( (/) e. CC -> (/) ~~> (/) ) |
14 |
3 13
|
eqbrtrid |
|- ( (/) e. CC -> F ~~> (/) ) |
15 |
|
releldm |
|- ( ( Rel ~~> /\ F ~~> (/) ) -> F e. dom ~~> ) |
16 |
12 14 15
|
syl2anc |
|- ( (/) e. CC -> F e. dom ~~> ) |
17 |
16
|
adantr |
|- ( ( (/) e. CC /\ -. -oo e. CC ) -> F e. dom ~~> ) |
18 |
13
|
adantr |
|- ( ( (/) e. CC /\ F ~~> ( limsup ` F ) ) -> (/) ~~> (/) ) |
19 |
18
|
adantlr |
|- ( ( ( (/) e. CC /\ -. -oo e. CC ) /\ F ~~> ( limsup ` F ) ) -> (/) ~~> (/) ) |
20 |
|
simpr |
|- ( ( F ~~> ( limsup ` F ) /\ (/) ~~> (/) ) -> (/) ~~> (/) ) |
21 |
3
|
fveq2i |
|- ( limsup ` F ) = ( limsup ` (/) ) |
22 |
|
limsup0 |
|- ( limsup ` (/) ) = -oo |
23 |
21 22
|
eqtri |
|- ( limsup ` F ) = -oo |
24 |
3 23
|
breq12i |
|- ( F ~~> ( limsup ` F ) <-> (/) ~~> -oo ) |
25 |
24
|
biimpi |
|- ( F ~~> ( limsup ` F ) -> (/) ~~> -oo ) |
26 |
25
|
adantr |
|- ( ( F ~~> ( limsup ` F ) /\ (/) ~~> (/) ) -> (/) ~~> -oo ) |
27 |
|
climuni |
|- ( ( (/) ~~> (/) /\ (/) ~~> -oo ) -> (/) = -oo ) |
28 |
20 26 27
|
syl2anc |
|- ( ( F ~~> ( limsup ` F ) /\ (/) ~~> (/) ) -> (/) = -oo ) |
29 |
28
|
adantll |
|- ( ( ( ( (/) e. CC /\ -. -oo e. CC ) /\ F ~~> ( limsup ` F ) ) /\ (/) ~~> (/) ) -> (/) = -oo ) |
30 |
|
nelneq |
|- ( ( (/) e. CC /\ -. -oo e. CC ) -> -. (/) = -oo ) |
31 |
30
|
ad2antrr |
|- ( ( ( ( (/) e. CC /\ -. -oo e. CC ) /\ F ~~> ( limsup ` F ) ) /\ (/) ~~> (/) ) -> -. (/) = -oo ) |
32 |
29 31
|
pm2.65da |
|- ( ( ( (/) e. CC /\ -. -oo e. CC ) /\ F ~~> ( limsup ` F ) ) -> -. (/) ~~> (/) ) |
33 |
19 32
|
pm2.65da |
|- ( ( (/) e. CC /\ -. -oo e. CC ) -> -. F ~~> ( limsup ` F ) ) |
34 |
10 17 33
|
3jca |
|- ( ( (/) e. CC /\ -. -oo e. CC ) -> ( F : Z --> RR /\ F e. dom ~~> /\ -. F ~~> ( limsup ` F ) ) ) |