Step |
Hyp |
Ref |
Expression |
1 |
|
climlimsupcex.1 |
|
2 |
|
climlimsupcex.2 |
|
3 |
|
climlimsupcex.3 |
|
4 |
|
f0 |
|
5 |
|
uz0 |
|
6 |
1 5
|
ax-mp |
|
7 |
2 6
|
eqtri |
|
8 |
3 7
|
feq12i |
|
9 |
4 8
|
mpbir |
|
10 |
9
|
a1i |
|
11 |
|
climrel |
|
12 |
11
|
a1i |
|
13 |
|
0cnv |
|
14 |
3 13
|
eqbrtrid |
|
15 |
|
releldm |
|
16 |
12 14 15
|
syl2anc |
|
17 |
16
|
adantr |
|
18 |
13
|
adantr |
|
19 |
18
|
adantlr |
|
20 |
|
simpr |
|
21 |
3
|
fveq2i |
|
22 |
|
limsup0 |
|
23 |
21 22
|
eqtri |
|
24 |
3 23
|
breq12i |
|
25 |
24
|
biimpi |
|
26 |
25
|
adantr |
|
27 |
|
climuni |
|
28 |
20 26 27
|
syl2anc |
|
29 |
28
|
adantll |
|
30 |
|
nelneq |
|
31 |
30
|
ad2antrr |
|
32 |
29 31
|
pm2.65da |
|
33 |
19 32
|
pm2.65da |
|
34 |
10 17 33
|
3jca |
|