Metamath Proof Explorer


Theorem liminfcld

Description: Closure of the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis liminfcld.1 φ F V
Assertion liminfcld φ lim inf F *

Proof

Step Hyp Ref Expression
1 liminfcld.1 φ F V
2 liminfcl F V lim inf F *
3 1 2 syl φ lim inf F *