Metamath Proof Explorer


Theorem liminfcld

Description: Closure of the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis liminfcld.1 φFV
Assertion liminfcld φlim infF*

Proof

Step Hyp Ref Expression
1 liminfcld.1 φFV
2 liminfcl FVlim infF*
3 1 2 syl φlim infF*