Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Limits
Inferior limit (lim inf)
liminfcld
Next ⟩
liminfresico
Metamath Proof Explorer
Ascii
Unicode
Theorem
liminfcld
Description:
Closure of the inferior limit.
(Contributed by
Glauco Siliprandi
, 2-Jan-2022)
Ref
Expression
Hypothesis
liminfcld.1
⊢
φ
→
F
∈
V
Assertion
liminfcld
⊢
φ
→
lim inf
⁡
F
∈
ℝ
*
Proof
Step
Hyp
Ref
Expression
1
liminfcld.1
⊢
φ
→
F
∈
V
2
liminfcl
⊢
F
∈
V
→
lim inf
⁡
F
∈
ℝ
*
3
1
2
syl
⊢
φ
→
lim inf
⁡
F
∈
ℝ
*