Metamath Proof Explorer


Theorem liminfcld

Description: Closure of the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis liminfcld.1
|- ( ph -> F e. V )
Assertion liminfcld
|- ( ph -> ( liminf ` F ) e. RR* )

Proof

Step Hyp Ref Expression
1 liminfcld.1
 |-  ( ph -> F e. V )
2 liminfcl
 |-  ( F e. V -> ( liminf ` F ) e. RR* )
3 1 2 syl
 |-  ( ph -> ( liminf ` F ) e. RR* )