Description: Closure of the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | liminfcld.1 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
Assertion | liminfcld | ⊢ ( 𝜑 → ( lim inf ‘ 𝐹 ) ∈ ℝ* ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | liminfcld.1 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
2 | liminfcl | ⊢ ( 𝐹 ∈ 𝑉 → ( lim inf ‘ 𝐹 ) ∈ ℝ* ) | |
3 | 1 2 | syl | ⊢ ( 𝜑 → ( lim inf ‘ 𝐹 ) ∈ ℝ* ) |