Metamath Proof Explorer


Theorem liminfcld

Description: Closure of the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis liminfcld.1 ( 𝜑𝐹𝑉 )
Assertion liminfcld ( 𝜑 → ( lim inf ‘ 𝐹 ) ∈ ℝ* )

Proof

Step Hyp Ref Expression
1 liminfcld.1 ( 𝜑𝐹𝑉 )
2 liminfcl ( 𝐹𝑉 → ( lim inf ‘ 𝐹 ) ∈ ℝ* )
3 1 2 syl ( 𝜑 → ( lim inf ‘ 𝐹 ) ∈ ℝ* )