| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climlimsupcex.1 |
⊢ ¬ 𝑀 ∈ ℤ |
| 2 |
|
climlimsupcex.2 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 3 |
|
climlimsupcex.3 |
⊢ 𝐹 = ∅ |
| 4 |
|
f0 |
⊢ ∅ : ∅ ⟶ ℝ |
| 5 |
|
uz0 |
⊢ ( ¬ 𝑀 ∈ ℤ → ( ℤ≥ ‘ 𝑀 ) = ∅ ) |
| 6 |
1 5
|
ax-mp |
⊢ ( ℤ≥ ‘ 𝑀 ) = ∅ |
| 7 |
2 6
|
eqtri |
⊢ 𝑍 = ∅ |
| 8 |
3 7
|
feq12i |
⊢ ( 𝐹 : 𝑍 ⟶ ℝ ↔ ∅ : ∅ ⟶ ℝ ) |
| 9 |
4 8
|
mpbir |
⊢ 𝐹 : 𝑍 ⟶ ℝ |
| 10 |
9
|
a1i |
⊢ ( ( ∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ ) → 𝐹 : 𝑍 ⟶ ℝ ) |
| 11 |
|
climrel |
⊢ Rel ⇝ |
| 12 |
11
|
a1i |
⊢ ( ∅ ∈ ℂ → Rel ⇝ ) |
| 13 |
|
0cnv |
⊢ ( ∅ ∈ ℂ → ∅ ⇝ ∅ ) |
| 14 |
3 13
|
eqbrtrid |
⊢ ( ∅ ∈ ℂ → 𝐹 ⇝ ∅ ) |
| 15 |
|
releldm |
⊢ ( ( Rel ⇝ ∧ 𝐹 ⇝ ∅ ) → 𝐹 ∈ dom ⇝ ) |
| 16 |
12 14 15
|
syl2anc |
⊢ ( ∅ ∈ ℂ → 𝐹 ∈ dom ⇝ ) |
| 17 |
16
|
adantr |
⊢ ( ( ∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ ) → 𝐹 ∈ dom ⇝ ) |
| 18 |
13
|
adantr |
⊢ ( ( ∅ ∈ ℂ ∧ 𝐹 ⇝ ( lim sup ‘ 𝐹 ) ) → ∅ ⇝ ∅ ) |
| 19 |
18
|
adantlr |
⊢ ( ( ( ∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ ) ∧ 𝐹 ⇝ ( lim sup ‘ 𝐹 ) ) → ∅ ⇝ ∅ ) |
| 20 |
|
simpr |
⊢ ( ( 𝐹 ⇝ ( lim sup ‘ 𝐹 ) ∧ ∅ ⇝ ∅ ) → ∅ ⇝ ∅ ) |
| 21 |
3
|
fveq2i |
⊢ ( lim sup ‘ 𝐹 ) = ( lim sup ‘ ∅ ) |
| 22 |
|
limsup0 |
⊢ ( lim sup ‘ ∅ ) = -∞ |
| 23 |
21 22
|
eqtri |
⊢ ( lim sup ‘ 𝐹 ) = -∞ |
| 24 |
3 23
|
breq12i |
⊢ ( 𝐹 ⇝ ( lim sup ‘ 𝐹 ) ↔ ∅ ⇝ -∞ ) |
| 25 |
24
|
biimpi |
⊢ ( 𝐹 ⇝ ( lim sup ‘ 𝐹 ) → ∅ ⇝ -∞ ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝐹 ⇝ ( lim sup ‘ 𝐹 ) ∧ ∅ ⇝ ∅ ) → ∅ ⇝ -∞ ) |
| 27 |
|
climuni |
⊢ ( ( ∅ ⇝ ∅ ∧ ∅ ⇝ -∞ ) → ∅ = -∞ ) |
| 28 |
20 26 27
|
syl2anc |
⊢ ( ( 𝐹 ⇝ ( lim sup ‘ 𝐹 ) ∧ ∅ ⇝ ∅ ) → ∅ = -∞ ) |
| 29 |
28
|
adantll |
⊢ ( ( ( ( ∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ ) ∧ 𝐹 ⇝ ( lim sup ‘ 𝐹 ) ) ∧ ∅ ⇝ ∅ ) → ∅ = -∞ ) |
| 30 |
|
nelneq |
⊢ ( ( ∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ ) → ¬ ∅ = -∞ ) |
| 31 |
30
|
ad2antrr |
⊢ ( ( ( ( ∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ ) ∧ 𝐹 ⇝ ( lim sup ‘ 𝐹 ) ) ∧ ∅ ⇝ ∅ ) → ¬ ∅ = -∞ ) |
| 32 |
29 31
|
pm2.65da |
⊢ ( ( ( ∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ ) ∧ 𝐹 ⇝ ( lim sup ‘ 𝐹 ) ) → ¬ ∅ ⇝ ∅ ) |
| 33 |
19 32
|
pm2.65da |
⊢ ( ( ∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ ) → ¬ 𝐹 ⇝ ( lim sup ‘ 𝐹 ) ) |
| 34 |
10 17 33
|
3jca |
⊢ ( ( ∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ ) → ( 𝐹 : 𝑍 ⟶ ℝ ∧ 𝐹 ∈ dom ⇝ ∧ ¬ 𝐹 ⇝ ( lim sup ‘ 𝐹 ) ) ) |