Step |
Hyp |
Ref |
Expression |
1 |
|
climlimsupcex.1 |
⊢ ¬ 𝑀 ∈ ℤ |
2 |
|
climlimsupcex.2 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
climlimsupcex.3 |
⊢ 𝐹 = ∅ |
4 |
|
f0 |
⊢ ∅ : ∅ ⟶ ℝ |
5 |
|
uz0 |
⊢ ( ¬ 𝑀 ∈ ℤ → ( ℤ≥ ‘ 𝑀 ) = ∅ ) |
6 |
1 5
|
ax-mp |
⊢ ( ℤ≥ ‘ 𝑀 ) = ∅ |
7 |
2 6
|
eqtri |
⊢ 𝑍 = ∅ |
8 |
3 7
|
feq12i |
⊢ ( 𝐹 : 𝑍 ⟶ ℝ ↔ ∅ : ∅ ⟶ ℝ ) |
9 |
4 8
|
mpbir |
⊢ 𝐹 : 𝑍 ⟶ ℝ |
10 |
9
|
a1i |
⊢ ( ( ∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ ) → 𝐹 : 𝑍 ⟶ ℝ ) |
11 |
|
climrel |
⊢ Rel ⇝ |
12 |
11
|
a1i |
⊢ ( ∅ ∈ ℂ → Rel ⇝ ) |
13 |
|
0cnv |
⊢ ( ∅ ∈ ℂ → ∅ ⇝ ∅ ) |
14 |
3 13
|
eqbrtrid |
⊢ ( ∅ ∈ ℂ → 𝐹 ⇝ ∅ ) |
15 |
|
releldm |
⊢ ( ( Rel ⇝ ∧ 𝐹 ⇝ ∅ ) → 𝐹 ∈ dom ⇝ ) |
16 |
12 14 15
|
syl2anc |
⊢ ( ∅ ∈ ℂ → 𝐹 ∈ dom ⇝ ) |
17 |
16
|
adantr |
⊢ ( ( ∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ ) → 𝐹 ∈ dom ⇝ ) |
18 |
13
|
adantr |
⊢ ( ( ∅ ∈ ℂ ∧ 𝐹 ⇝ ( lim sup ‘ 𝐹 ) ) → ∅ ⇝ ∅ ) |
19 |
18
|
adantlr |
⊢ ( ( ( ∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ ) ∧ 𝐹 ⇝ ( lim sup ‘ 𝐹 ) ) → ∅ ⇝ ∅ ) |
20 |
|
simpr |
⊢ ( ( 𝐹 ⇝ ( lim sup ‘ 𝐹 ) ∧ ∅ ⇝ ∅ ) → ∅ ⇝ ∅ ) |
21 |
3
|
fveq2i |
⊢ ( lim sup ‘ 𝐹 ) = ( lim sup ‘ ∅ ) |
22 |
|
limsup0 |
⊢ ( lim sup ‘ ∅ ) = -∞ |
23 |
21 22
|
eqtri |
⊢ ( lim sup ‘ 𝐹 ) = -∞ |
24 |
3 23
|
breq12i |
⊢ ( 𝐹 ⇝ ( lim sup ‘ 𝐹 ) ↔ ∅ ⇝ -∞ ) |
25 |
24
|
biimpi |
⊢ ( 𝐹 ⇝ ( lim sup ‘ 𝐹 ) → ∅ ⇝ -∞ ) |
26 |
25
|
adantr |
⊢ ( ( 𝐹 ⇝ ( lim sup ‘ 𝐹 ) ∧ ∅ ⇝ ∅ ) → ∅ ⇝ -∞ ) |
27 |
|
climuni |
⊢ ( ( ∅ ⇝ ∅ ∧ ∅ ⇝ -∞ ) → ∅ = -∞ ) |
28 |
20 26 27
|
syl2anc |
⊢ ( ( 𝐹 ⇝ ( lim sup ‘ 𝐹 ) ∧ ∅ ⇝ ∅ ) → ∅ = -∞ ) |
29 |
28
|
adantll |
⊢ ( ( ( ( ∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ ) ∧ 𝐹 ⇝ ( lim sup ‘ 𝐹 ) ) ∧ ∅ ⇝ ∅ ) → ∅ = -∞ ) |
30 |
|
nelneq |
⊢ ( ( ∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ ) → ¬ ∅ = -∞ ) |
31 |
30
|
ad2antrr |
⊢ ( ( ( ( ∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ ) ∧ 𝐹 ⇝ ( lim sup ‘ 𝐹 ) ) ∧ ∅ ⇝ ∅ ) → ¬ ∅ = -∞ ) |
32 |
29 31
|
pm2.65da |
⊢ ( ( ( ∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ ) ∧ 𝐹 ⇝ ( lim sup ‘ 𝐹 ) ) → ¬ ∅ ⇝ ∅ ) |
33 |
19 32
|
pm2.65da |
⊢ ( ( ∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ ) → ¬ 𝐹 ⇝ ( lim sup ‘ 𝐹 ) ) |
34 |
10 17 33
|
3jca |
⊢ ( ( ∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ ) → ( 𝐹 : 𝑍 ⟶ ℝ ∧ 𝐹 ∈ dom ⇝ ∧ ¬ 𝐹 ⇝ ( lim sup ‘ 𝐹 ) ) ) |