Metamath Proof Explorer


Theorem 0cnv

Description: If (/) is a complex number, then it converges to itself. See 0ncn and its comment; see also the comment in climlimsupcex . (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Assertion 0cnv ( ∅ ∈ ℂ → ∅ ⇝ ∅ )

Proof

Step Hyp Ref Expression
1 id ( ∅ ∈ ℂ → ∅ ∈ ℂ )
2 0zd ( ( ∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → 0 ∈ ℤ )
3 simpl ( ( ∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ∅ ∈ ℂ )
4 subid ( ∅ ∈ ℂ → ( ∅ − ∅ ) = 0 )
5 4 fveq2d ( ∅ ∈ ℂ → ( abs ‘ ( ∅ − ∅ ) ) = ( abs ‘ 0 ) )
6 abs0 ( abs ‘ 0 ) = 0
7 6 a1i ( ∅ ∈ ℂ → ( abs ‘ 0 ) = 0 )
8 5 7 eqtrd ( ∅ ∈ ℂ → ( abs ‘ ( ∅ − ∅ ) ) = 0 )
9 8 adantr ( ( ∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ( abs ‘ ( ∅ − ∅ ) ) = 0 )
10 rpgt0 ( 𝑥 ∈ ℝ+ → 0 < 𝑥 )
11 10 adantl ( ( ∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → 0 < 𝑥 )
12 9 11 eqbrtrd ( ( ∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ( abs ‘ ( ∅ − ∅ ) ) < 𝑥 )
13 3 12 jca ( ( ∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ( ∅ ∈ ℂ ∧ ( abs ‘ ( ∅ − ∅ ) ) < 𝑥 ) )
14 13 ralrimivw ( ( ∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ∀ 𝑘 ∈ ( ℤ ‘ 0 ) ( ∅ ∈ ℂ ∧ ( abs ‘ ( ∅ − ∅ ) ) < 𝑥 ) )
15 fveq2 ( 𝑚 = 0 → ( ℤ𝑚 ) = ( ℤ ‘ 0 ) )
16 15 raleqdv ( 𝑚 = 0 → ( ∀ 𝑘 ∈ ( ℤ𝑚 ) ( ∅ ∈ ℂ ∧ ( abs ‘ ( ∅ − ∅ ) ) < 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ ‘ 0 ) ( ∅ ∈ ℂ ∧ ( abs ‘ ( ∅ − ∅ ) ) < 𝑥 ) ) )
17 16 rspcev ( ( 0 ∈ ℤ ∧ ∀ 𝑘 ∈ ( ℤ ‘ 0 ) ( ∅ ∈ ℂ ∧ ( abs ‘ ( ∅ − ∅ ) ) < 𝑥 ) ) → ∃ 𝑚 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑚 ) ( ∅ ∈ ℂ ∧ ( abs ‘ ( ∅ − ∅ ) ) < 𝑥 ) )
18 2 14 17 syl2anc ( ( ∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑚 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑚 ) ( ∅ ∈ ℂ ∧ ( abs ‘ ( ∅ − ∅ ) ) < 𝑥 ) )
19 18 ralrimiva ( ∅ ∈ ℂ → ∀ 𝑥 ∈ ℝ+𝑚 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑚 ) ( ∅ ∈ ℂ ∧ ( abs ‘ ( ∅ − ∅ ) ) < 𝑥 ) )
20 1 19 jca ( ∅ ∈ ℂ → ( ∅ ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑚 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑚 ) ( ∅ ∈ ℂ ∧ ( abs ‘ ( ∅ − ∅ ) ) < 𝑥 ) ) )
21 0ex ∅ ∈ V
22 21 a1i ( ⊤ → ∅ ∈ V )
23 0fv ( ∅ ‘ 𝑘 ) = ∅
24 23 a1i ( ( ⊤ ∧ 𝑘 ∈ ℤ ) → ( ∅ ‘ 𝑘 ) = ∅ )
25 22 24 clim ( ⊤ → ( ∅ ⇝ ∅ ↔ ( ∅ ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑚 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑚 ) ( ∅ ∈ ℂ ∧ ( abs ‘ ( ∅ − ∅ ) ) < 𝑥 ) ) ) )
26 25 mptru ( ∅ ⇝ ∅ ↔ ( ∅ ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑚 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑚 ) ( ∅ ∈ ℂ ∧ ( abs ‘ ( ∅ − ∅ ) ) < 𝑥 ) ) )
27 20 26 sylibr ( ∅ ∈ ℂ → ∅ ⇝ ∅ )