Step |
Hyp |
Ref |
Expression |
1 |
|
id |
⊢ ( ∅ ∈ ℂ → ∅ ∈ ℂ ) |
2 |
|
0zd |
⊢ ( ( ∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → 0 ∈ ℤ ) |
3 |
|
simpl |
⊢ ( ( ∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ∅ ∈ ℂ ) |
4 |
|
subid |
⊢ ( ∅ ∈ ℂ → ( ∅ − ∅ ) = 0 ) |
5 |
4
|
fveq2d |
⊢ ( ∅ ∈ ℂ → ( abs ‘ ( ∅ − ∅ ) ) = ( abs ‘ 0 ) ) |
6 |
|
abs0 |
⊢ ( abs ‘ 0 ) = 0 |
7 |
6
|
a1i |
⊢ ( ∅ ∈ ℂ → ( abs ‘ 0 ) = 0 ) |
8 |
5 7
|
eqtrd |
⊢ ( ∅ ∈ ℂ → ( abs ‘ ( ∅ − ∅ ) ) = 0 ) |
9 |
8
|
adantr |
⊢ ( ( ∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ( abs ‘ ( ∅ − ∅ ) ) = 0 ) |
10 |
|
rpgt0 |
⊢ ( 𝑥 ∈ ℝ+ → 0 < 𝑥 ) |
11 |
10
|
adantl |
⊢ ( ( ∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → 0 < 𝑥 ) |
12 |
9 11
|
eqbrtrd |
⊢ ( ( ∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ( abs ‘ ( ∅ − ∅ ) ) < 𝑥 ) |
13 |
3 12
|
jca |
⊢ ( ( ∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ( ∅ ∈ ℂ ∧ ( abs ‘ ( ∅ − ∅ ) ) < 𝑥 ) ) |
14 |
13
|
ralrimivw |
⊢ ( ( ∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 0 ) ( ∅ ∈ ℂ ∧ ( abs ‘ ( ∅ − ∅ ) ) < 𝑥 ) ) |
15 |
|
fveq2 |
⊢ ( 𝑚 = 0 → ( ℤ≥ ‘ 𝑚 ) = ( ℤ≥ ‘ 0 ) ) |
16 |
15
|
raleqdv |
⊢ ( 𝑚 = 0 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ∅ ∈ ℂ ∧ ( abs ‘ ( ∅ − ∅ ) ) < 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 0 ) ( ∅ ∈ ℂ ∧ ( abs ‘ ( ∅ − ∅ ) ) < 𝑥 ) ) ) |
17 |
16
|
rspcev |
⊢ ( ( 0 ∈ ℤ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 0 ) ( ∅ ∈ ℂ ∧ ( abs ‘ ( ∅ − ∅ ) ) < 𝑥 ) ) → ∃ 𝑚 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ∅ ∈ ℂ ∧ ( abs ‘ ( ∅ − ∅ ) ) < 𝑥 ) ) |
18 |
2 14 17
|
syl2anc |
⊢ ( ( ∅ ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑚 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ∅ ∈ ℂ ∧ ( abs ‘ ( ∅ − ∅ ) ) < 𝑥 ) ) |
19 |
18
|
ralrimiva |
⊢ ( ∅ ∈ ℂ → ∀ 𝑥 ∈ ℝ+ ∃ 𝑚 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ∅ ∈ ℂ ∧ ( abs ‘ ( ∅ − ∅ ) ) < 𝑥 ) ) |
20 |
1 19
|
jca |
⊢ ( ∅ ∈ ℂ → ( ∅ ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑚 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ∅ ∈ ℂ ∧ ( abs ‘ ( ∅ − ∅ ) ) < 𝑥 ) ) ) |
21 |
|
0ex |
⊢ ∅ ∈ V |
22 |
21
|
a1i |
⊢ ( ⊤ → ∅ ∈ V ) |
23 |
|
0fv |
⊢ ( ∅ ‘ 𝑘 ) = ∅ |
24 |
23
|
a1i |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℤ ) → ( ∅ ‘ 𝑘 ) = ∅ ) |
25 |
22 24
|
clim |
⊢ ( ⊤ → ( ∅ ⇝ ∅ ↔ ( ∅ ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑚 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ∅ ∈ ℂ ∧ ( abs ‘ ( ∅ − ∅ ) ) < 𝑥 ) ) ) ) |
26 |
25
|
mptru |
⊢ ( ∅ ⇝ ∅ ↔ ( ∅ ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑚 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ∅ ∈ ℂ ∧ ( abs ‘ ( ∅ − ∅ ) ) < 𝑥 ) ) ) |
27 |
20 26
|
sylibr |
⊢ ( ∅ ∈ ℂ → ∅ ⇝ ∅ ) |