Metamath Proof Explorer


Theorem 0cnv

Description: If (/) is a complex number, then it converges to itself. See 0ncn and its comment; see also the comment in climlimsupcex . (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Assertion 0cnv

Proof

Step Hyp Ref Expression
1 id
2 0zd x + 0
3 simpl x +
4 subid = 0
5 4 fveq2d = 0
6 abs0 0 = 0
7 6 a1i 0 = 0
8 5 7 eqtrd = 0
9 8 adantr x + = 0
10 rpgt0 x + 0 < x
11 10 adantl x + 0 < x
12 9 11 eqbrtrd x + < x
13 3 12 jca x + < x
14 13 ralrimivw x + k 0 < x
15 fveq2 m = 0 m = 0
16 15 raleqdv m = 0 k m < x k 0 < x
17 16 rspcev 0 k 0 < x m k m < x
18 2 14 17 syl2anc x + m k m < x
19 18 ralrimiva x + m k m < x
20 1 19 jca x + m k m < x
21 0ex V
22 21 a1i V
23 0fv k =
24 23 a1i k k =
25 22 24 clim x + m k m < x
26 25 mptru x + m k m < x
27 20 26 sylibr