Step |
Hyp |
Ref |
Expression |
1 |
|
id |
|- ( (/) e. CC -> (/) e. CC ) |
2 |
|
0zd |
|- ( ( (/) e. CC /\ x e. RR+ ) -> 0 e. ZZ ) |
3 |
|
simpl |
|- ( ( (/) e. CC /\ x e. RR+ ) -> (/) e. CC ) |
4 |
|
subid |
|- ( (/) e. CC -> ( (/) - (/) ) = 0 ) |
5 |
4
|
fveq2d |
|- ( (/) e. CC -> ( abs ` ( (/) - (/) ) ) = ( abs ` 0 ) ) |
6 |
|
abs0 |
|- ( abs ` 0 ) = 0 |
7 |
6
|
a1i |
|- ( (/) e. CC -> ( abs ` 0 ) = 0 ) |
8 |
5 7
|
eqtrd |
|- ( (/) e. CC -> ( abs ` ( (/) - (/) ) ) = 0 ) |
9 |
8
|
adantr |
|- ( ( (/) e. CC /\ x e. RR+ ) -> ( abs ` ( (/) - (/) ) ) = 0 ) |
10 |
|
rpgt0 |
|- ( x e. RR+ -> 0 < x ) |
11 |
10
|
adantl |
|- ( ( (/) e. CC /\ x e. RR+ ) -> 0 < x ) |
12 |
9 11
|
eqbrtrd |
|- ( ( (/) e. CC /\ x e. RR+ ) -> ( abs ` ( (/) - (/) ) ) < x ) |
13 |
3 12
|
jca |
|- ( ( (/) e. CC /\ x e. RR+ ) -> ( (/) e. CC /\ ( abs ` ( (/) - (/) ) ) < x ) ) |
14 |
13
|
ralrimivw |
|- ( ( (/) e. CC /\ x e. RR+ ) -> A. k e. ( ZZ>= ` 0 ) ( (/) e. CC /\ ( abs ` ( (/) - (/) ) ) < x ) ) |
15 |
|
fveq2 |
|- ( m = 0 -> ( ZZ>= ` m ) = ( ZZ>= ` 0 ) ) |
16 |
15
|
raleqdv |
|- ( m = 0 -> ( A. k e. ( ZZ>= ` m ) ( (/) e. CC /\ ( abs ` ( (/) - (/) ) ) < x ) <-> A. k e. ( ZZ>= ` 0 ) ( (/) e. CC /\ ( abs ` ( (/) - (/) ) ) < x ) ) ) |
17 |
16
|
rspcev |
|- ( ( 0 e. ZZ /\ A. k e. ( ZZ>= ` 0 ) ( (/) e. CC /\ ( abs ` ( (/) - (/) ) ) < x ) ) -> E. m e. ZZ A. k e. ( ZZ>= ` m ) ( (/) e. CC /\ ( abs ` ( (/) - (/) ) ) < x ) ) |
18 |
2 14 17
|
syl2anc |
|- ( ( (/) e. CC /\ x e. RR+ ) -> E. m e. ZZ A. k e. ( ZZ>= ` m ) ( (/) e. CC /\ ( abs ` ( (/) - (/) ) ) < x ) ) |
19 |
18
|
ralrimiva |
|- ( (/) e. CC -> A. x e. RR+ E. m e. ZZ A. k e. ( ZZ>= ` m ) ( (/) e. CC /\ ( abs ` ( (/) - (/) ) ) < x ) ) |
20 |
1 19
|
jca |
|- ( (/) e. CC -> ( (/) e. CC /\ A. x e. RR+ E. m e. ZZ A. k e. ( ZZ>= ` m ) ( (/) e. CC /\ ( abs ` ( (/) - (/) ) ) < x ) ) ) |
21 |
|
0ex |
|- (/) e. _V |
22 |
21
|
a1i |
|- ( T. -> (/) e. _V ) |
23 |
|
0fv |
|- ( (/) ` k ) = (/) |
24 |
23
|
a1i |
|- ( ( T. /\ k e. ZZ ) -> ( (/) ` k ) = (/) ) |
25 |
22 24
|
clim |
|- ( T. -> ( (/) ~~> (/) <-> ( (/) e. CC /\ A. x e. RR+ E. m e. ZZ A. k e. ( ZZ>= ` m ) ( (/) e. CC /\ ( abs ` ( (/) - (/) ) ) < x ) ) ) ) |
26 |
25
|
mptru |
|- ( (/) ~~> (/) <-> ( (/) e. CC /\ A. x e. RR+ E. m e. ZZ A. k e. ( ZZ>= ` m ) ( (/) e. CC /\ ( abs ` ( (/) - (/) ) ) < x ) ) ) |
27 |
20 26
|
sylibr |
|- ( (/) e. CC -> (/) ~~> (/) ) |