| Step |
Hyp |
Ref |
Expression |
| 1 |
|
liminfval2.1 |
|
| 2 |
|
liminfval2.2 |
|
| 3 |
|
liminfval2.3 |
|
| 4 |
|
liminfval2.4 |
|
| 5 |
|
oveq1 |
|
| 6 |
5
|
imaeq2d |
|
| 7 |
6
|
ineq1d |
|
| 8 |
7
|
infeq1d |
|
| 9 |
8
|
cbvmptv |
|
| 10 |
1 9
|
eqtri |
|
| 11 |
10
|
liminfval |
|
| 12 |
2 11
|
syl |
|
| 13 |
3
|
ssrexr |
|
| 14 |
|
supxrunb1 |
|
| 15 |
13 14
|
syl |
|
| 16 |
4 15
|
mpbird |
|
| 17 |
10
|
liminfgf |
|
| 18 |
17
|
ffvelcdmi |
|
| 19 |
18
|
ad2antlr |
|
| 20 |
|
simpll |
|
| 21 |
|
simprl |
|
| 22 |
3
|
sselda |
|
| 23 |
17
|
ffvelcdmi |
|
| 24 |
22 23
|
syl |
|
| 25 |
20 21 24
|
syl2anc |
|
| 26 |
|
imassrn |
|
| 27 |
|
frn |
|
| 28 |
17 27
|
ax-mp |
|
| 29 |
26 28
|
sstri |
|
| 30 |
|
supxrcl |
|
| 31 |
29 30
|
ax-mp |
|
| 32 |
31
|
a1i |
|
| 33 |
|
simplr |
|
| 34 |
20 21 22
|
syl2anc |
|
| 35 |
|
simprr |
|
| 36 |
|
liminfgord |
|
| 37 |
33 34 35 36
|
syl3anc |
|
| 38 |
10
|
liminfgval |
|
| 39 |
38
|
ad2antlr |
|
| 40 |
10
|
liminfgval |
|
| 41 |
22 40
|
syl |
|
| 42 |
41
|
adantlr |
|
| 43 |
39 42
|
breq12d |
|
| 44 |
43
|
adantrr |
|
| 45 |
37 44
|
mpbird |
|
| 46 |
29
|
a1i |
|
| 47 |
|
nfv |
|
| 48 |
|
inss2 |
|
| 49 |
|
infxrcl |
|
| 50 |
48 49
|
ax-mp |
|
| 51 |
50
|
a1i |
|
| 52 |
47 51 10
|
fnmptd |
|
| 53 |
52
|
adantr |
|
| 54 |
|
simpr |
|
| 55 |
53 22 54
|
fnfvimad |
|
| 56 |
|
supxrub |
|
| 57 |
46 55 56
|
syl2anc |
|
| 58 |
20 21 57
|
syl2anc |
|
| 59 |
19 25 32 45 58
|
xrletrd |
|
| 60 |
59
|
rexlimdvaa |
|
| 61 |
60
|
ralimdva |
|
| 62 |
16 61
|
mpd |
|
| 63 |
|
xrltso |
|
| 64 |
63
|
infex |
|
| 65 |
64
|
rgenw |
|
| 66 |
10
|
fnmpt |
|
| 67 |
65 66
|
ax-mp |
|
| 68 |
|
breq1 |
|
| 69 |
68
|
ralrn |
|
| 70 |
67 69
|
ax-mp |
|
| 71 |
62 70
|
sylibr |
|
| 72 |
|
supxrleub |
|
| 73 |
28 31 72
|
mp2an |
|
| 74 |
71 73
|
sylibr |
|
| 75 |
26
|
a1i |
|
| 76 |
28
|
a1i |
|
| 77 |
|
supxrss |
|
| 78 |
75 76 77
|
syl2anc |
|
| 79 |
|
supxrcl |
|
| 80 |
28 79
|
ax-mp |
|
| 81 |
|
xrletri3 |
|
| 82 |
80 31 81
|
mp2an |
|
| 83 |
74 78 82
|
sylanbrc |
|
| 84 |
12 83
|
eqtrd |
|