Step |
Hyp |
Ref |
Expression |
1 |
|
liminfval2.1 |
|
2 |
|
liminfval2.2 |
|
3 |
|
liminfval2.3 |
|
4 |
|
liminfval2.4 |
|
5 |
|
oveq1 |
|
6 |
5
|
imaeq2d |
|
7 |
6
|
ineq1d |
|
8 |
7
|
infeq1d |
|
9 |
8
|
cbvmptv |
|
10 |
1 9
|
eqtri |
|
11 |
10
|
liminfval |
|
12 |
2 11
|
syl |
|
13 |
3
|
ssrexr |
|
14 |
|
supxrunb1 |
|
15 |
13 14
|
syl |
|
16 |
4 15
|
mpbird |
|
17 |
10
|
liminfgf |
|
18 |
17
|
ffvelrni |
|
19 |
18
|
ad2antlr |
|
20 |
|
simpll |
|
21 |
|
simprl |
|
22 |
3
|
sselda |
|
23 |
17
|
ffvelrni |
|
24 |
22 23
|
syl |
|
25 |
20 21 24
|
syl2anc |
|
26 |
|
imassrn |
|
27 |
|
frn |
|
28 |
17 27
|
ax-mp |
|
29 |
26 28
|
sstri |
|
30 |
|
supxrcl |
|
31 |
29 30
|
ax-mp |
|
32 |
31
|
a1i |
|
33 |
|
simplr |
|
34 |
20 21 22
|
syl2anc |
|
35 |
|
simprr |
|
36 |
|
liminfgord |
|
37 |
33 34 35 36
|
syl3anc |
|
38 |
10
|
liminfgval |
|
39 |
38
|
ad2antlr |
|
40 |
10
|
liminfgval |
|
41 |
22 40
|
syl |
|
42 |
41
|
adantlr |
|
43 |
39 42
|
breq12d |
|
44 |
43
|
adantrr |
|
45 |
37 44
|
mpbird |
|
46 |
29
|
a1i |
|
47 |
|
nfv |
|
48 |
|
inss2 |
|
49 |
|
infxrcl |
|
50 |
48 49
|
ax-mp |
|
51 |
50
|
a1i |
|
52 |
47 51 10
|
fnmptd |
|
53 |
52
|
adantr |
|
54 |
|
simpr |
|
55 |
53 22 54
|
fnfvimad |
|
56 |
|
supxrub |
|
57 |
46 55 56
|
syl2anc |
|
58 |
20 21 57
|
syl2anc |
|
59 |
19 25 32 45 58
|
xrletrd |
|
60 |
59
|
rexlimdvaa |
|
61 |
60
|
ralimdva |
|
62 |
16 61
|
mpd |
|
63 |
|
xrltso |
|
64 |
63
|
infex |
|
65 |
64
|
rgenw |
|
66 |
10
|
fnmpt |
|
67 |
65 66
|
ax-mp |
|
68 |
|
breq1 |
|
69 |
68
|
ralrn |
|
70 |
67 69
|
ax-mp |
|
71 |
62 70
|
sylibr |
|
72 |
|
supxrleub |
|
73 |
28 31 72
|
mp2an |
|
74 |
71 73
|
sylibr |
|
75 |
26
|
a1i |
|
76 |
28
|
a1i |
|
77 |
|
supxrss |
|
78 |
75 76 77
|
syl2anc |
|
79 |
|
supxrcl |
|
80 |
28 79
|
ax-mp |
|
81 |
|
xrletri3 |
|
82 |
80 31 81
|
mp2an |
|
83 |
74 78 82
|
sylanbrc |
|
84 |
12 83
|
eqtrd |
|