Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Limits
Inferior limit (lim inf)
liminfgf
Next ⟩
liminfval
Metamath Proof Explorer
Ascii
Unicode
Theorem
liminfgf
Description:
Closure of the inferior limit function.
(Contributed by
Glauco Siliprandi
, 2-Jan-2022)
Ref
Expression
Hypothesis
liminfgf.1
⊢
G
=
k
∈
ℝ
⟼
inf
F
k
+∞
∩
ℝ
*
ℝ
*
<
Assertion
liminfgf
⊢
G
:
ℝ
⟶
ℝ
*
Proof
Step
Hyp
Ref
Expression
1
liminfgf.1
⊢
G
=
k
∈
ℝ
⟼
inf
F
k
+∞
∩
ℝ
*
ℝ
*
<
2
inss2
⊢
F
k
+∞
∩
ℝ
*
⊆
ℝ
*
3
infxrcl
⊢
F
k
+∞
∩
ℝ
*
⊆
ℝ
*
→
inf
F
k
+∞
∩
ℝ
*
ℝ
*
<
∈
ℝ
*
4
2
3
mp1i
⊢
k
∈
ℝ
→
inf
F
k
+∞
∩
ℝ
*
ℝ
*
<
∈
ℝ
*
5
1
4
fmpti
⊢
G
:
ℝ
⟶
ℝ
*