Description: Closure of the inferior limit function. (Contributed by Glauco Siliprandi, 2-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | liminfgf.1 | ⊢ 𝐺 = ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) | |
| Assertion | liminfgf | ⊢ 𝐺 : ℝ ⟶ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | liminfgf.1 | ⊢ 𝐺 = ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) | |
| 2 | inss2 | ⊢ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* | |
| 3 | infxrcl | ⊢ ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* → inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ ℝ* ) | |
| 4 | 2 3 | mp1i | ⊢ ( 𝑘 ∈ ℝ → inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ ℝ* ) |
| 5 | 1 4 | fmpti | ⊢ 𝐺 : ℝ ⟶ ℝ* |