Step |
Hyp |
Ref |
Expression |
1 |
|
liminfgval.1 |
|- G = ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
2 |
|
oveq1 |
|- ( k = M -> ( k [,) +oo ) = ( M [,) +oo ) ) |
3 |
2
|
imaeq2d |
|- ( k = M -> ( F " ( k [,) +oo ) ) = ( F " ( M [,) +oo ) ) ) |
4 |
3
|
ineq1d |
|- ( k = M -> ( ( F " ( k [,) +oo ) ) i^i RR* ) = ( ( F " ( M [,) +oo ) ) i^i RR* ) ) |
5 |
4
|
infeq1d |
|- ( k = M -> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) = inf ( ( ( F " ( M [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
6 |
|
xrltso |
|- < Or RR* |
7 |
6
|
infex |
|- inf ( ( ( F " ( M [,) +oo ) ) i^i RR* ) , RR* , < ) e. _V |
8 |
5 1 7
|
fvmpt |
|- ( M e. RR -> ( G ` M ) = inf ( ( ( F " ( M [,) +oo ) ) i^i RR* ) , RR* , < ) ) |