Step |
Hyp |
Ref |
Expression |
1 |
|
limsupval5.1 |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
limsupval5.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
limsupval5.3 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ* ) |
4 |
|
limsupval5.4 |
⊢ 𝐺 = ( 𝑘 ∈ ℝ ↦ inf ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ) |
5 |
3 2
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
6 |
|
eqid |
⊢ ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
7 |
6
|
liminfval |
⊢ ( 𝐹 ∈ V → ( lim inf ‘ 𝐹 ) = sup ( ran ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |
8 |
5 7
|
syl |
⊢ ( 𝜑 → ( lim inf ‘ 𝐹 ) = sup ( ran ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |
9 |
4
|
a1i |
⊢ ( 𝜑 → 𝐺 = ( 𝑘 ∈ ℝ ↦ inf ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ) ) |
10 |
3
|
fimassd |
⊢ ( 𝜑 → ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ⊆ ℝ* ) |
11 |
|
df-ss |
⊢ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ⊆ ℝ* ↔ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) = ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) |
12 |
10 11
|
sylib |
⊢ ( 𝜑 → ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) = ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) |
13 |
12
|
eqcomd |
⊢ ( 𝜑 → ( 𝐹 “ ( 𝑘 [,) +∞ ) ) = ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → ( 𝐹 “ ( 𝑘 [,) +∞ ) ) = ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) |
15 |
14
|
infeq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → inf ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) = inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
16 |
1 15
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑘 ∈ ℝ ↦ inf ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ) = ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ) |
17 |
9 16
|
eqtr2d |
⊢ ( 𝜑 → ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = 𝐺 ) |
18 |
17
|
rneqd |
⊢ ( 𝜑 → ran ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ran 𝐺 ) |
19 |
18
|
supeq1d |
⊢ ( 𝜑 → sup ( ran ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) = sup ( ran 𝐺 , ℝ* , < ) ) |
20 |
8 19
|
eqtrd |
⊢ ( 𝜑 → ( lim inf ‘ 𝐹 ) = sup ( ran 𝐺 , ℝ* , < ) ) |