Metamath Proof Explorer


Theorem liminfval5

Description: The inferior limit of an infinite sequence F of extended real numbers. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses limsupval5.1 k φ
limsupval5.2 φ A V
limsupval5.3 φ F : A *
limsupval5.4 G = k sup F k +∞ * <
Assertion liminfval5 φ lim inf F = sup ran G * <

Proof

Step Hyp Ref Expression
1 limsupval5.1 k φ
2 limsupval5.2 φ A V
3 limsupval5.3 φ F : A *
4 limsupval5.4 G = k sup F k +∞ * <
5 3 2 fexd φ F V
6 eqid k sup F k +∞ * * < = k sup F k +∞ * * <
7 6 liminfval F V lim inf F = sup ran k sup F k +∞ * * < * <
8 5 7 syl φ lim inf F = sup ran k sup F k +∞ * * < * <
9 4 a1i φ G = k sup F k +∞ * <
10 3 fimassd φ F k +∞ *
11 df-ss F k +∞ * F k +∞ * = F k +∞
12 10 11 sylib φ F k +∞ * = F k +∞
13 12 eqcomd φ F k +∞ = F k +∞ *
14 13 adantr φ k F k +∞ = F k +∞ *
15 14 infeq1d φ k sup F k +∞ * < = sup F k +∞ * * <
16 1 15 mpteq2da φ k sup F k +∞ * < = k sup F k +∞ * * <
17 9 16 eqtr2d φ k sup F k +∞ * * < = G
18 17 rneqd φ ran k sup F k +∞ * * < = ran G
19 18 supeq1d φ sup ran k sup F k +∞ * * < * < = sup ran G * <
20 8 19 eqtrd φ lim inf F = sup ran G * <