Metamath Proof Explorer


Theorem limsupcli

Description: Closure of the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis limsupcli.1 𝐹𝑉
Assertion limsupcli ( lim sup ‘ 𝐹 ) ∈ ℝ*

Proof

Step Hyp Ref Expression
1 limsupcli.1 𝐹𝑉
2 limsupcl ( 𝐹𝑉 → ( lim sup ‘ 𝐹 ) ∈ ℝ* )
3 1 2 ax-mp ( lim sup ‘ 𝐹 ) ∈ ℝ*