Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Limits
Inferior limit (lim inf)
limsupcli
Next ⟩
liminfgf
Metamath Proof Explorer
Ascii
Unicode
Theorem
limsupcli
Description:
Closure of the superior limit.
(Contributed by
Glauco Siliprandi
, 2-Jan-2022)
Ref
Expression
Hypothesis
limsupcli.1
⊢
F
∈
V
Assertion
limsupcli
⊢
lim sup
⁡
F
∈
ℝ
*
Proof
Step
Hyp
Ref
Expression
1
limsupcli.1
⊢
F
∈
V
2
limsupcl
⊢
F
∈
V
→
lim sup
⁡
F
∈
ℝ
*
3
1
2
ax-mp
⊢
lim sup
⁡
F
∈
ℝ
*