Metamath Proof Explorer


Theorem limsupresicompt

Description: The superior limit doesn't change when a function is restricted to the upper part of the reals. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses limsupresicompt.a ( 𝜑𝐴𝑉 )
limsupresicompt.m ( 𝜑𝑀 ∈ ℝ )
limsupresicompt.z 𝑍 = ( 𝑀 [,) +∞ )
Assertion limsupresicompt ( 𝜑 → ( lim sup ‘ ( 𝑥𝐴𝐵 ) ) = ( lim sup ‘ ( 𝑥 ∈ ( 𝐴𝑍 ) ↦ 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 limsupresicompt.a ( 𝜑𝐴𝑉 )
2 limsupresicompt.m ( 𝜑𝑀 ∈ ℝ )
3 limsupresicompt.z 𝑍 = ( 𝑀 [,) +∞ )
4 1 mptexd ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ V )
5 2 3 4 limsupresico ( 𝜑 → ( lim sup ‘ ( ( 𝑥𝐴𝐵 ) ↾ 𝑍 ) ) = ( lim sup ‘ ( 𝑥𝐴𝐵 ) ) )
6 resmpt3 ( ( 𝑥𝐴𝐵 ) ↾ 𝑍 ) = ( 𝑥 ∈ ( 𝐴𝑍 ) ↦ 𝐵 )
7 6 a1i ( 𝜑 → ( ( 𝑥𝐴𝐵 ) ↾ 𝑍 ) = ( 𝑥 ∈ ( 𝐴𝑍 ) ↦ 𝐵 ) )
8 7 fveq2d ( 𝜑 → ( lim sup ‘ ( ( 𝑥𝐴𝐵 ) ↾ 𝑍 ) ) = ( lim sup ‘ ( 𝑥 ∈ ( 𝐴𝑍 ) ↦ 𝐵 ) ) )
9 5 8 eqtr3d ( 𝜑 → ( lim sup ‘ ( 𝑥𝐴𝐵 ) ) = ( lim sup ‘ ( 𝑥 ∈ ( 𝐴𝑍 ) ↦ 𝐵 ) ) )