| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limsup10exlem.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 1 ) ) |
| 2 |
|
limsup10exlem.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
| 3 |
|
c0ex |
⊢ 0 ∈ V |
| 4 |
3
|
prid1 |
⊢ 0 ∈ { 0 , 1 } |
| 5 |
|
1re |
⊢ 1 ∈ ℝ |
| 6 |
5
|
elexi |
⊢ 1 ∈ V |
| 7 |
6
|
prid2 |
⊢ 1 ∈ { 0 , 1 } |
| 8 |
4 7
|
ifcli |
⊢ if ( 2 ∥ 𝑛 , 0 , 1 ) ∈ { 0 , 1 } |
| 9 |
8
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∩ ( 𝐾 [,) +∞ ) ) ) → if ( 2 ∥ 𝑛 , 0 , 1 ) ∈ { 0 , 1 } ) |
| 10 |
9
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ( ℕ ∩ ( 𝐾 [,) +∞ ) ) if ( 2 ∥ 𝑛 , 0 , 1 ) ∈ { 0 , 1 } ) |
| 11 |
|
nfv |
⊢ Ⅎ 𝑛 𝜑 |
| 12 |
3 6
|
ifex |
⊢ if ( 2 ∥ 𝑛 , 0 , 1 ) ∈ V |
| 13 |
12
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∩ ( 𝐾 [,) +∞ ) ) ) → if ( 2 ∥ 𝑛 , 0 , 1 ) ∈ V ) |
| 14 |
11 13 1
|
imassmpt |
⊢ ( 𝜑 → ( ( 𝐹 “ ( 𝐾 [,) +∞ ) ) ⊆ { 0 , 1 } ↔ ∀ 𝑛 ∈ ( ℕ ∩ ( 𝐾 [,) +∞ ) ) if ( 2 ∥ 𝑛 , 0 , 1 ) ∈ { 0 , 1 } ) ) |
| 15 |
10 14
|
mpbird |
⊢ ( 𝜑 → ( 𝐹 “ ( 𝐾 [,) +∞ ) ) ⊆ { 0 , 1 } ) |
| 16 |
2
|
ceilcld |
⊢ ( 𝜑 → ( ⌈ ‘ 𝐾 ) ∈ ℤ ) |
| 17 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 18 |
16 17
|
ifcld |
⊢ ( 𝜑 → if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ∈ ℤ ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 = ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) ) → if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ∈ ℤ ) |
| 20 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 = ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) ) → 𝑛 = ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) ) |
| 21 |
|
2teven |
⊢ ( ( if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ∈ ℤ ∧ 𝑛 = ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) ) → 2 ∥ 𝑛 ) |
| 22 |
19 20 21
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 = ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) ) → 2 ∥ 𝑛 ) |
| 23 |
22
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑛 = ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) ) → if ( 2 ∥ 𝑛 , 0 , 1 ) = 0 ) |
| 24 |
|
2nn |
⊢ 2 ∈ ℕ |
| 25 |
24
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ ) |
| 26 |
|
eqid |
⊢ ( ℤ≥ ‘ 1 ) = ( ℤ≥ ‘ 1 ) |
| 27 |
5
|
a1i |
⊢ ( ( 𝜑 ∧ 1 ≤ 𝐾 ) → 1 ∈ ℝ ) |
| 28 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 1 ≤ 𝐾 ) → 𝐾 ∈ ℝ ) |
| 29 |
16
|
zred |
⊢ ( 𝜑 → ( ⌈ ‘ 𝐾 ) ∈ ℝ ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 1 ≤ 𝐾 ) → ( ⌈ ‘ 𝐾 ) ∈ ℝ ) |
| 31 |
|
simpr |
⊢ ( ( 𝜑 ∧ 1 ≤ 𝐾 ) → 1 ≤ 𝐾 ) |
| 32 |
2
|
ceilged |
⊢ ( 𝜑 → 𝐾 ≤ ( ⌈ ‘ 𝐾 ) ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 1 ≤ 𝐾 ) → 𝐾 ≤ ( ⌈ ‘ 𝐾 ) ) |
| 34 |
27 28 30 31 33
|
letrd |
⊢ ( ( 𝜑 ∧ 1 ≤ 𝐾 ) → 1 ≤ ( ⌈ ‘ 𝐾 ) ) |
| 35 |
|
iftrue |
⊢ ( 1 ≤ 𝐾 → if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) = ( ⌈ ‘ 𝐾 ) ) |
| 36 |
35
|
adantl |
⊢ ( ( 𝜑 ∧ 1 ≤ 𝐾 ) → if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) = ( ⌈ ‘ 𝐾 ) ) |
| 37 |
34 36
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 1 ≤ 𝐾 ) → 1 ≤ if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) |
| 38 |
5
|
leidi |
⊢ 1 ≤ 1 |
| 39 |
38
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 1 ≤ 𝐾 ) → 1 ≤ 1 ) |
| 40 |
|
iffalse |
⊢ ( ¬ 1 ≤ 𝐾 → if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) = 1 ) |
| 41 |
40
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 1 ≤ 𝐾 ) → if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) = 1 ) |
| 42 |
39 41
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ¬ 1 ≤ 𝐾 ) → 1 ≤ if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) |
| 43 |
37 42
|
pm2.61dan |
⊢ ( 𝜑 → 1 ≤ if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) |
| 44 |
26 17 18 43
|
eluzd |
⊢ ( 𝜑 → if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 45 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 46 |
44 45
|
eleqtrrdi |
⊢ ( 𝜑 → if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ∈ ℕ ) |
| 47 |
25 46
|
nnmulcld |
⊢ ( 𝜑 → ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) ∈ ℕ ) |
| 48 |
3
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
| 49 |
1 23 47 48
|
fvmptd2 |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) ) = 0 ) |
| 50 |
12 1
|
fnmpti |
⊢ 𝐹 Fn ℕ |
| 51 |
50
|
a1i |
⊢ ( 𝜑 → 𝐹 Fn ℕ ) |
| 52 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐾 ∈ ℝ* ) |
| 53 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 54 |
53
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
| 55 |
47
|
nnxrd |
⊢ ( 𝜑 → ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) ∈ ℝ* ) |
| 56 |
47
|
nnred |
⊢ ( 𝜑 → ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) ∈ ℝ ) |
| 57 |
46
|
nnred |
⊢ ( 𝜑 → if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ∈ ℝ ) |
| 58 |
33 36
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 1 ≤ 𝐾 ) → 𝐾 ≤ if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) |
| 59 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 1 ≤ 𝐾 ) → 𝐾 ∈ ℝ ) |
| 60 |
5
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 1 ≤ 𝐾 ) → 1 ∈ ℝ ) |
| 61 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 1 ≤ 𝐾 ) → ¬ 1 ≤ 𝐾 ) |
| 62 |
59 60 61
|
nleltd |
⊢ ( ( 𝜑 ∧ ¬ 1 ≤ 𝐾 ) → 𝐾 < 1 ) |
| 63 |
59 60 62
|
ltled |
⊢ ( ( 𝜑 ∧ ¬ 1 ≤ 𝐾 ) → 𝐾 ≤ 1 ) |
| 64 |
41
|
eqcomd |
⊢ ( ( 𝜑 ∧ ¬ 1 ≤ 𝐾 ) → 1 = if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) |
| 65 |
63 64
|
breqtrd |
⊢ ( ( 𝜑 ∧ ¬ 1 ≤ 𝐾 ) → 𝐾 ≤ if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) |
| 66 |
58 65
|
pm2.61dan |
⊢ ( 𝜑 → 𝐾 ≤ if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) |
| 67 |
46
|
nnrpd |
⊢ ( 𝜑 → if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ∈ ℝ+ ) |
| 68 |
|
2timesgt |
⊢ ( if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ∈ ℝ+ → if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) < ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) ) |
| 69 |
67 68
|
syl |
⊢ ( 𝜑 → if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) < ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) ) |
| 70 |
2 57 56 66 69
|
lelttrd |
⊢ ( 𝜑 → 𝐾 < ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) ) |
| 71 |
2 56 70
|
ltled |
⊢ ( 𝜑 → 𝐾 ≤ ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) ) |
| 72 |
56
|
ltpnfd |
⊢ ( 𝜑 → ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) < +∞ ) |
| 73 |
52 54 55 71 72
|
elicod |
⊢ ( 𝜑 → ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) ∈ ( 𝐾 [,) +∞ ) ) |
| 74 |
51 47 73
|
fnfvimad |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) ) ∈ ( 𝐹 “ ( 𝐾 [,) +∞ ) ) ) |
| 75 |
49 74
|
eqeltrrd |
⊢ ( 𝜑 → 0 ∈ ( 𝐹 “ ( 𝐾 [,) +∞ ) ) ) |
| 76 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 = ( ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) + 1 ) ) → if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ∈ ℤ ) |
| 77 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 = ( ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) + 1 ) ) → 𝑛 = ( ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) + 1 ) ) |
| 78 |
|
2tp1odd |
⊢ ( ( if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ∈ ℤ ∧ 𝑛 = ( ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) + 1 ) ) → ¬ 2 ∥ 𝑛 ) |
| 79 |
76 77 78
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 = ( ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) + 1 ) ) → ¬ 2 ∥ 𝑛 ) |
| 80 |
79
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑛 = ( ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) + 1 ) ) → if ( 2 ∥ 𝑛 , 0 , 1 ) = 1 ) |
| 81 |
47
|
peano2nnd |
⊢ ( 𝜑 → ( ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) + 1 ) ∈ ℕ ) |
| 82 |
|
1xr |
⊢ 1 ∈ ℝ* |
| 83 |
82
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℝ* ) |
| 84 |
1 80 81 83
|
fvmptd2 |
⊢ ( 𝜑 → ( 𝐹 ‘ ( ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) + 1 ) ) = 1 ) |
| 85 |
81
|
nnxrd |
⊢ ( 𝜑 → ( ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) + 1 ) ∈ ℝ* ) |
| 86 |
81
|
nnred |
⊢ ( 𝜑 → ( ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) + 1 ) ∈ ℝ ) |
| 87 |
56
|
ltp1d |
⊢ ( 𝜑 → ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) < ( ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) + 1 ) ) |
| 88 |
2 56 86 70 87
|
lttrd |
⊢ ( 𝜑 → 𝐾 < ( ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) + 1 ) ) |
| 89 |
2 86 88
|
ltled |
⊢ ( 𝜑 → 𝐾 ≤ ( ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) + 1 ) ) |
| 90 |
86
|
ltpnfd |
⊢ ( 𝜑 → ( ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) + 1 ) < +∞ ) |
| 91 |
52 54 85 89 90
|
elicod |
⊢ ( 𝜑 → ( ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) + 1 ) ∈ ( 𝐾 [,) +∞ ) ) |
| 92 |
51 81 91
|
fnfvimad |
⊢ ( 𝜑 → ( 𝐹 ‘ ( ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) + 1 ) ) ∈ ( 𝐹 “ ( 𝐾 [,) +∞ ) ) ) |
| 93 |
84 92
|
eqeltrrd |
⊢ ( 𝜑 → 1 ∈ ( 𝐹 “ ( 𝐾 [,) +∞ ) ) ) |
| 94 |
75 93
|
prssd |
⊢ ( 𝜑 → { 0 , 1 } ⊆ ( 𝐹 “ ( 𝐾 [,) +∞ ) ) ) |
| 95 |
15 94
|
eqssd |
⊢ ( 𝜑 → ( 𝐹 “ ( 𝐾 [,) +∞ ) ) = { 0 , 1 } ) |