Step |
Hyp |
Ref |
Expression |
1 |
|
limsup10exlem.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 1 ) ) |
2 |
|
limsup10exlem.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
3 |
|
c0ex |
⊢ 0 ∈ V |
4 |
3
|
prid1 |
⊢ 0 ∈ { 0 , 1 } |
5 |
|
1re |
⊢ 1 ∈ ℝ |
6 |
5
|
elexi |
⊢ 1 ∈ V |
7 |
6
|
prid2 |
⊢ 1 ∈ { 0 , 1 } |
8 |
4 7
|
ifcli |
⊢ if ( 2 ∥ 𝑛 , 0 , 1 ) ∈ { 0 , 1 } |
9 |
8
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∩ ( 𝐾 [,) +∞ ) ) ) → if ( 2 ∥ 𝑛 , 0 , 1 ) ∈ { 0 , 1 } ) |
10 |
9
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ( ℕ ∩ ( 𝐾 [,) +∞ ) ) if ( 2 ∥ 𝑛 , 0 , 1 ) ∈ { 0 , 1 } ) |
11 |
|
nfv |
⊢ Ⅎ 𝑛 𝜑 |
12 |
3 6
|
ifex |
⊢ if ( 2 ∥ 𝑛 , 0 , 1 ) ∈ V |
13 |
12
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∩ ( 𝐾 [,) +∞ ) ) ) → if ( 2 ∥ 𝑛 , 0 , 1 ) ∈ V ) |
14 |
11 13 1
|
imassmpt |
⊢ ( 𝜑 → ( ( 𝐹 “ ( 𝐾 [,) +∞ ) ) ⊆ { 0 , 1 } ↔ ∀ 𝑛 ∈ ( ℕ ∩ ( 𝐾 [,) +∞ ) ) if ( 2 ∥ 𝑛 , 0 , 1 ) ∈ { 0 , 1 } ) ) |
15 |
10 14
|
mpbird |
⊢ ( 𝜑 → ( 𝐹 “ ( 𝐾 [,) +∞ ) ) ⊆ { 0 , 1 } ) |
16 |
2
|
ceilcld |
⊢ ( 𝜑 → ( ⌈ ‘ 𝐾 ) ∈ ℤ ) |
17 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
18 |
16 17
|
ifcld |
⊢ ( 𝜑 → if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ∈ ℤ ) |
19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 = ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) ) → if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ∈ ℤ ) |
20 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 = ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) ) → 𝑛 = ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) ) |
21 |
|
2teven |
⊢ ( ( if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ∈ ℤ ∧ 𝑛 = ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) ) → 2 ∥ 𝑛 ) |
22 |
19 20 21
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 = ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) ) → 2 ∥ 𝑛 ) |
23 |
22
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑛 = ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) ) → if ( 2 ∥ 𝑛 , 0 , 1 ) = 0 ) |
24 |
|
2nn |
⊢ 2 ∈ ℕ |
25 |
24
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ ) |
26 |
|
eqid |
⊢ ( ℤ≥ ‘ 1 ) = ( ℤ≥ ‘ 1 ) |
27 |
5
|
a1i |
⊢ ( ( 𝜑 ∧ 1 ≤ 𝐾 ) → 1 ∈ ℝ ) |
28 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 1 ≤ 𝐾 ) → 𝐾 ∈ ℝ ) |
29 |
16
|
zred |
⊢ ( 𝜑 → ( ⌈ ‘ 𝐾 ) ∈ ℝ ) |
30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 1 ≤ 𝐾 ) → ( ⌈ ‘ 𝐾 ) ∈ ℝ ) |
31 |
|
simpr |
⊢ ( ( 𝜑 ∧ 1 ≤ 𝐾 ) → 1 ≤ 𝐾 ) |
32 |
2
|
ceilged |
⊢ ( 𝜑 → 𝐾 ≤ ( ⌈ ‘ 𝐾 ) ) |
33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 1 ≤ 𝐾 ) → 𝐾 ≤ ( ⌈ ‘ 𝐾 ) ) |
34 |
27 28 30 31 33
|
letrd |
⊢ ( ( 𝜑 ∧ 1 ≤ 𝐾 ) → 1 ≤ ( ⌈ ‘ 𝐾 ) ) |
35 |
|
iftrue |
⊢ ( 1 ≤ 𝐾 → if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) = ( ⌈ ‘ 𝐾 ) ) |
36 |
35
|
adantl |
⊢ ( ( 𝜑 ∧ 1 ≤ 𝐾 ) → if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) = ( ⌈ ‘ 𝐾 ) ) |
37 |
34 36
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 1 ≤ 𝐾 ) → 1 ≤ if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) |
38 |
5
|
leidi |
⊢ 1 ≤ 1 |
39 |
38
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 1 ≤ 𝐾 ) → 1 ≤ 1 ) |
40 |
|
iffalse |
⊢ ( ¬ 1 ≤ 𝐾 → if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) = 1 ) |
41 |
40
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 1 ≤ 𝐾 ) → if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) = 1 ) |
42 |
39 41
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ¬ 1 ≤ 𝐾 ) → 1 ≤ if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) |
43 |
37 42
|
pm2.61dan |
⊢ ( 𝜑 → 1 ≤ if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) |
44 |
26 17 18 43
|
eluzd |
⊢ ( 𝜑 → if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
45 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
46 |
44 45
|
eleqtrrdi |
⊢ ( 𝜑 → if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ∈ ℕ ) |
47 |
25 46
|
nnmulcld |
⊢ ( 𝜑 → ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) ∈ ℕ ) |
48 |
3
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
49 |
1 23 47 48
|
fvmptd2 |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) ) = 0 ) |
50 |
12 1
|
fnmpti |
⊢ 𝐹 Fn ℕ |
51 |
50
|
a1i |
⊢ ( 𝜑 → 𝐹 Fn ℕ ) |
52 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐾 ∈ ℝ* ) |
53 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
54 |
53
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
55 |
47
|
nnxrd |
⊢ ( 𝜑 → ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) ∈ ℝ* ) |
56 |
47
|
nnred |
⊢ ( 𝜑 → ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) ∈ ℝ ) |
57 |
46
|
nnred |
⊢ ( 𝜑 → if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ∈ ℝ ) |
58 |
33 36
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 1 ≤ 𝐾 ) → 𝐾 ≤ if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) |
59 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 1 ≤ 𝐾 ) → 𝐾 ∈ ℝ ) |
60 |
5
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 1 ≤ 𝐾 ) → 1 ∈ ℝ ) |
61 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 1 ≤ 𝐾 ) → ¬ 1 ≤ 𝐾 ) |
62 |
59 60 61
|
nleltd |
⊢ ( ( 𝜑 ∧ ¬ 1 ≤ 𝐾 ) → 𝐾 < 1 ) |
63 |
59 60 62
|
ltled |
⊢ ( ( 𝜑 ∧ ¬ 1 ≤ 𝐾 ) → 𝐾 ≤ 1 ) |
64 |
41
|
eqcomd |
⊢ ( ( 𝜑 ∧ ¬ 1 ≤ 𝐾 ) → 1 = if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) |
65 |
63 64
|
breqtrd |
⊢ ( ( 𝜑 ∧ ¬ 1 ≤ 𝐾 ) → 𝐾 ≤ if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) |
66 |
58 65
|
pm2.61dan |
⊢ ( 𝜑 → 𝐾 ≤ if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) |
67 |
46
|
nnrpd |
⊢ ( 𝜑 → if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ∈ ℝ+ ) |
68 |
|
2timesgt |
⊢ ( if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ∈ ℝ+ → if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) < ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) ) |
69 |
67 68
|
syl |
⊢ ( 𝜑 → if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) < ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) ) |
70 |
2 57 56 66 69
|
lelttrd |
⊢ ( 𝜑 → 𝐾 < ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) ) |
71 |
2 56 70
|
ltled |
⊢ ( 𝜑 → 𝐾 ≤ ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) ) |
72 |
56
|
ltpnfd |
⊢ ( 𝜑 → ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) < +∞ ) |
73 |
52 54 55 71 72
|
elicod |
⊢ ( 𝜑 → ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) ∈ ( 𝐾 [,) +∞ ) ) |
74 |
51 47 73
|
fnfvimad |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) ) ∈ ( 𝐹 “ ( 𝐾 [,) +∞ ) ) ) |
75 |
49 74
|
eqeltrrd |
⊢ ( 𝜑 → 0 ∈ ( 𝐹 “ ( 𝐾 [,) +∞ ) ) ) |
76 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 = ( ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) + 1 ) ) → if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ∈ ℤ ) |
77 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 = ( ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) + 1 ) ) → 𝑛 = ( ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) + 1 ) ) |
78 |
|
2tp1odd |
⊢ ( ( if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ∈ ℤ ∧ 𝑛 = ( ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) + 1 ) ) → ¬ 2 ∥ 𝑛 ) |
79 |
76 77 78
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 = ( ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) + 1 ) ) → ¬ 2 ∥ 𝑛 ) |
80 |
79
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑛 = ( ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) + 1 ) ) → if ( 2 ∥ 𝑛 , 0 , 1 ) = 1 ) |
81 |
47
|
peano2nnd |
⊢ ( 𝜑 → ( ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) + 1 ) ∈ ℕ ) |
82 |
|
1xr |
⊢ 1 ∈ ℝ* |
83 |
82
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℝ* ) |
84 |
1 80 81 83
|
fvmptd2 |
⊢ ( 𝜑 → ( 𝐹 ‘ ( ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) + 1 ) ) = 1 ) |
85 |
81
|
nnxrd |
⊢ ( 𝜑 → ( ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) + 1 ) ∈ ℝ* ) |
86 |
81
|
nnred |
⊢ ( 𝜑 → ( ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) + 1 ) ∈ ℝ ) |
87 |
56
|
ltp1d |
⊢ ( 𝜑 → ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) < ( ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) + 1 ) ) |
88 |
2 56 86 70 87
|
lttrd |
⊢ ( 𝜑 → 𝐾 < ( ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) + 1 ) ) |
89 |
2 86 88
|
ltled |
⊢ ( 𝜑 → 𝐾 ≤ ( ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) + 1 ) ) |
90 |
86
|
ltpnfd |
⊢ ( 𝜑 → ( ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) + 1 ) < +∞ ) |
91 |
52 54 85 89 90
|
elicod |
⊢ ( 𝜑 → ( ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) + 1 ) ∈ ( 𝐾 [,) +∞ ) ) |
92 |
51 81 91
|
fnfvimad |
⊢ ( 𝜑 → ( 𝐹 ‘ ( ( 2 · if ( 1 ≤ 𝐾 , ( ⌈ ‘ 𝐾 ) , 1 ) ) + 1 ) ) ∈ ( 𝐹 “ ( 𝐾 [,) +∞ ) ) ) |
93 |
84 92
|
eqeltrrd |
⊢ ( 𝜑 → 1 ∈ ( 𝐹 “ ( 𝐾 [,) +∞ ) ) ) |
94 |
75 93
|
prssd |
⊢ ( 𝜑 → { 0 , 1 } ⊆ ( 𝐹 “ ( 𝐾 [,) +∞ ) ) ) |
95 |
15 94
|
eqssd |
⊢ ( 𝜑 → ( 𝐹 “ ( 𝐾 [,) +∞ ) ) = { 0 , 1 } ) |