Metamath Proof Explorer


Theorem nnxrd

Description: A natural number is an extended real. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis nnxrd.1 ( 𝜑𝐴 ∈ ℕ )
Assertion nnxrd ( 𝜑𝐴 ∈ ℝ* )

Proof

Step Hyp Ref Expression
1 nnxrd.1 ( 𝜑𝐴 ∈ ℕ )
2 1 nnred ( 𝜑𝐴 ∈ ℝ )
3 2 rexrd ( 𝜑𝐴 ∈ ℝ* )