Metamath Proof Explorer


Theorem nnxrd

Description: A natural number is an extended real. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis nnxrd.1 φA
Assertion nnxrd φA*

Proof

Step Hyp Ref Expression
1 nnxrd.1 φA
2 1 nnred φA
3 2 rexrd φA*