Metamath Proof Explorer


Theorem nnxrd

Description: A natural number is an extended real. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis nnxrd.1 φ A
Assertion nnxrd φ A *

Proof

Step Hyp Ref Expression
1 nnxrd.1 φ A
2 1 nnred φ A
3 2 rexrd φ A *