| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imassmpt.1 |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
imassmpt.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ) → 𝐵 ∈ 𝑉 ) |
| 3 |
|
imassmpt.3 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 4 |
|
df-ima |
⊢ ( 𝐹 “ 𝐶 ) = ran ( 𝐹 ↾ 𝐶 ) |
| 5 |
3
|
reseq1i |
⊢ ( 𝐹 ↾ 𝐶 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝐶 ) |
| 6 |
|
resmpt3 |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝐶 ) = ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ↦ 𝐵 ) |
| 7 |
5 6
|
eqtri |
⊢ ( 𝐹 ↾ 𝐶 ) = ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ↦ 𝐵 ) |
| 8 |
7
|
rneqi |
⊢ ran ( 𝐹 ↾ 𝐶 ) = ran ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ↦ 𝐵 ) |
| 9 |
4 8
|
eqtri |
⊢ ( 𝐹 “ 𝐶 ) = ran ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ↦ 𝐵 ) |
| 10 |
9
|
sseq1i |
⊢ ( ( 𝐹 “ 𝐶 ) ⊆ 𝐷 ↔ ran ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ↦ 𝐵 ) ⊆ 𝐷 ) |
| 11 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ↦ 𝐵 ) = ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ↦ 𝐵 ) |
| 12 |
1 11 2
|
rnmptssbi |
⊢ ( 𝜑 → ( ran ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ↦ 𝐵 ) ⊆ 𝐷 ↔ ∀ 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) 𝐵 ∈ 𝐷 ) ) |
| 13 |
10 12
|
bitrid |
⊢ ( 𝜑 → ( ( 𝐹 “ 𝐶 ) ⊆ 𝐷 ↔ ∀ 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) 𝐵 ∈ 𝐷 ) ) |