| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imassmpt.1 |
|- F/ x ph |
| 2 |
|
imassmpt.2 |
|- ( ( ph /\ x e. ( A i^i C ) ) -> B e. V ) |
| 3 |
|
imassmpt.3 |
|- F = ( x e. A |-> B ) |
| 4 |
|
df-ima |
|- ( F " C ) = ran ( F |` C ) |
| 5 |
3
|
reseq1i |
|- ( F |` C ) = ( ( x e. A |-> B ) |` C ) |
| 6 |
|
resmpt3 |
|- ( ( x e. A |-> B ) |` C ) = ( x e. ( A i^i C ) |-> B ) |
| 7 |
5 6
|
eqtri |
|- ( F |` C ) = ( x e. ( A i^i C ) |-> B ) |
| 8 |
7
|
rneqi |
|- ran ( F |` C ) = ran ( x e. ( A i^i C ) |-> B ) |
| 9 |
4 8
|
eqtri |
|- ( F " C ) = ran ( x e. ( A i^i C ) |-> B ) |
| 10 |
9
|
sseq1i |
|- ( ( F " C ) C_ D <-> ran ( x e. ( A i^i C ) |-> B ) C_ D ) |
| 11 |
|
eqid |
|- ( x e. ( A i^i C ) |-> B ) = ( x e. ( A i^i C ) |-> B ) |
| 12 |
1 11 2
|
rnmptssbi |
|- ( ph -> ( ran ( x e. ( A i^i C ) |-> B ) C_ D <-> A. x e. ( A i^i C ) B e. D ) ) |
| 13 |
10 12
|
bitrid |
|- ( ph -> ( ( F " C ) C_ D <-> A. x e. ( A i^i C ) B e. D ) ) |